ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg Unicode version

Theorem algrflemg 6376
Description: Lemma for algrf 12567 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `
 B ) )

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 6004 . 2  |-  ( B ( F  o.  1st ) C )  =  ( ( F  o.  1st ) `  <. B ,  C >. )
2 fo1st 6303 . . . . 5  |-  1st : _V -onto-> _V
3 fof 5548 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
42, 3ax-mp 5 . . . 4  |-  1st : _V
--> _V
5 opexg 4314 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  -> 
<. B ,  C >.  e. 
_V )
6 fvco3 5705 . . . 4  |-  ( ( 1st : _V --> _V  /\  <. B ,  C >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
74, 5, 6sylancr 414 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
8 op1stg 6296 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( 1st `  <. B ,  C >. )  =  B )
98fveq2d 5631 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( F `  ( 1st `  <. B ,  C >. ) )  =  ( F `  B ) )
107, 9eqtrd 2262 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  B ) )
111, 10eqtrid 2274 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    o. ccom 4723   -->wf 5314   -onto->wfo 5316   ` cfv 5318  (class class class)co 6001   1stc1st 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-ov 6004  df-1st 6286
This theorem is referenced by:  ialgrlem1st  12564  algrp1  12568
  Copyright terms: Public domain W3C validator