ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflemg Unicode version

Theorem algrflemg 6339
Description: Lemma for algrf 12482 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
Assertion
Ref Expression
algrflemg  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `
 B ) )

Proof of Theorem algrflemg
StepHypRef Expression
1 df-ov 5970 . 2  |-  ( B ( F  o.  1st ) C )  =  ( ( F  o.  1st ) `  <. B ,  C >. )
2 fo1st 6266 . . . . 5  |-  1st : _V -onto-> _V
3 fof 5520 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
42, 3ax-mp 5 . . . 4  |-  1st : _V
--> _V
5 opexg 4290 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  -> 
<. B ,  C >.  e. 
_V )
6 fvco3 5673 . . . 4  |-  ( ( 1st : _V --> _V  /\  <. B ,  C >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
74, 5, 6sylancr 414 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
8 op1stg 6259 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( 1st `  <. B ,  C >. )  =  B )
98fveq2d 5603 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( F `  ( 1st `  <. B ,  C >. ) )  =  ( F `  B ) )
107, 9eqtrd 2240 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  B ) )
111, 10eqtrid 2252 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   <.cop 3646    o. ccom 4697   -->wf 5286   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967   1stc1st 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-ov 5970  df-1st 6249
This theorem is referenced by:  ialgrlem1st  12479  algrp1  12483
  Copyright terms: Public domain W3C validator