ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlem1st GIF version

Theorem ialgrlem1st 12045
Description: Lemma for ialgr0 12047. Expressing algrflemg 6234 in a form suitable for theorems such as seq3-1 10463 or seqf 10464. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypothesis
Ref Expression
ialgrlem1st.f (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
ialgrlem1st ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)

Proof of Theorem ialgrlem1st
StepHypRef Expression
1 algrflemg 6234 . . 3 ((𝑥𝑆𝑦𝑆) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥))
21adantl 277 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥))
3 ialgrlem1st.f . . . 4 (𝜑𝐹:𝑆𝑆)
43adantr 276 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐹:𝑆𝑆)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
64, 5ffvelcdmd 5655 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹𝑥) ∈ 𝑆)
72, 6eqeltrd 2254 1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  ccom 4632  wf 5214  cfv 5218  (class class class)co 5878  1st c1st 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-ov 5881  df-1st 6144
This theorem is referenced by:  ialgr0  12047  algrp1  12049
  Copyright terms: Public domain W3C validator