| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgrlem1st | GIF version | ||
| Description: Lemma for ialgr0 12441. Expressing algrflemg 6329 in a form suitable for theorems such as seq3-1 10629 or seqf 10631. (Contributed by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| ialgrlem1st.f | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| ialgrlem1st | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrflemg 6329 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥)) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥)) |
| 3 | ialgrlem1st.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐹:𝑆⟶𝑆) |
| 5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
| 6 | 4, 5 | ffvelcdmd 5729 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐹‘𝑥) ∈ 𝑆) |
| 7 | 2, 6 | eqeltrd 2283 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∘ ccom 4687 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 1st c1st 6237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 df-ov 5960 df-1st 6239 |
| This theorem is referenced by: ialgr0 12441 algrp1 12443 |
| Copyright terms: Public domain | W3C validator |