| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgrlem1st | GIF version | ||
| Description: Lemma for ialgr0 12561. Expressing algrflemg 6374 in a form suitable for theorems such as seq3-1 10679 or seqf 10681. (Contributed by Jim Kingdon, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| ialgrlem1st.f | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| ialgrlem1st | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrflemg 6374 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥)) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥)) |
| 3 | ialgrlem1st.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐹:𝑆⟶𝑆) |
| 5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
| 6 | 4, 5 | ffvelcdmd 5770 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐹‘𝑥) ∈ 𝑆) |
| 7 | 2, 6 | eqeltrd 2306 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∘ ccom 4722 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 1st c1st 6282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-ov 6003 df-1st 6284 |
| This theorem is referenced by: ialgr0 12561 algrp1 12563 |
| Copyright terms: Public domain | W3C validator |