| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ideq | GIF version | ||
| Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| ideq.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ideq | ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ideq.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | ideqg 4870 | . 2 ⊢ (𝐵 ∈ V → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 I cid 4376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 |
| This theorem is referenced by: dmi 4935 resieq 5011 resiexg 5046 iss 5047 restidsing 5057 imai 5080 issref 5107 intasym 5109 asymref 5110 intirr 5111 poirr2 5117 cnvi 5129 coi1 5240 idssen 6918 |
| Copyright terms: Public domain | W3C validator |