ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfiexmid Unicode version

Theorem ssfiexmid 6937
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
ssfiexmid.1  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
Assertion
Ref Expression
ssfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ssfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4160 . . . 4  |-  (/)  e.  _V
2 snfig 6873 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 5 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3268 . . 3  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssfiexmid.1 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
6 p0ex 4221 . . . . . 6  |-  { (/) }  e.  _V
7 eleq1 2259 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
8 sseq2 3207 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  C_  x  <->  y  C_  {
(/) } ) )
97, 8anbi12d 473 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  C_  x )  <->  ( { (/) }  e.  Fin  /\  y  C_  { (/) } ) ) )
109imbi1d 231 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  C_  x )  ->  y  e.  Fin )  <->  ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
1110albidv 1838 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
126, 11spcv 2858 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) )
135, 12ax-mp 5 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  C_ 
{ (/) } )  -> 
y  e.  Fin )
146rabex 4177 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
15 sseq1 3206 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
1615anbi2d 464 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  C_  { (/) } ) ) )
17 eleq1 2259 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
1816, 17imbi12d 234 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  C_  {
(/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
1914, 18spcv 2858 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2013, 19ax-mp 5 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
213, 4, 20mp2an 426 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2221ssfilem 6936 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   (/)c0 3450   {csn 3622   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  infiexmid  6938
  Copyright terms: Public domain W3C validator