ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfiexmid Unicode version

Theorem ssfiexmid 6999
Description: If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
ssfiexmid.1  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
Assertion
Ref Expression
ssfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ssfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4187 . . . 4  |-  (/)  e.  _V
2 snfig 6930 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 5 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3286 . . 3  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssfiexmid.1 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
6 p0ex 4248 . . . . . 6  |-  { (/) }  e.  _V
7 eleq1 2270 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
8 sseq2 3225 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  C_  x  <->  y  C_  {
(/) } ) )
97, 8anbi12d 473 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  C_  x )  <->  ( { (/) }  e.  Fin  /\  y  C_  { (/) } ) ) )
109imbi1d 231 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  C_  x )  ->  y  e.  Fin )  <->  ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
1110albidv 1848 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) ) )
126, 11spcv 2874 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) )
135, 12ax-mp 5 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  C_ 
{ (/) } )  -> 
y  e.  Fin )
146rabex 4204 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
15 sseq1 3224 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
1615anbi2d 464 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  C_  { (/) } ) ) )
17 eleq1 2270 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
1816, 17imbi12d 234 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  C_  {
(/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
1914, 18spcv 2874 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  C_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2013, 19ax-mp 5 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  C_ 
{ (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
213, 4, 20mp2an 426 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2221ssfilem 6998 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776    C_ wss 3174   (/)c0 3468   {csn 3643   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  infiexmid  7000
  Copyright terms: Public domain W3C validator