![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isneip | GIF version |
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isneip | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3763 | . . 3 ⊢ (𝑃 ∈ 𝑋 → {𝑃} ⊆ 𝑋) | |
2 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | isnei 14323 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
4 | 1, 3 | sylan2 286 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
5 | snssg 3753 | . . . . . 6 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑔 ↔ {𝑃} ⊆ 𝑔)) | |
6 | 5 | anbi1d 465 | . . . . 5 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
7 | 6 | rexbidv 2495 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | anbi2d 464 | . . 3 ⊢ (𝑃 ∈ 𝑋 → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
9 | 8 | adantl 277 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
10 | 4, 9 | bitr4d 191 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 {csn 3619 ∪ cuni 3836 ‘cfv 5255 Topctop 14176 neicnei 14317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-top 14177 df-nei 14318 |
This theorem is referenced by: neipsm 14333 cnpnei 14398 neibl 14670 |
Copyright terms: Public domain | W3C validator |