Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isneip | GIF version |
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isneip | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3724 | . . 3 ⊢ (𝑃 ∈ 𝑋 → {𝑃} ⊆ 𝑋) | |
2 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | isnei 12938 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
4 | 1, 3 | sylan2 284 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
5 | snssg 3716 | . . . . . 6 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑔 ↔ {𝑃} ⊆ 𝑔)) | |
6 | 5 | anbi1d 462 | . . . . 5 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
7 | 6 | rexbidv 2471 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | anbi2d 461 | . . 3 ⊢ (𝑃 ∈ 𝑋 → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
9 | 8 | adantl 275 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
10 | 4, 9 | bitr4d 190 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 {csn 3583 ∪ cuni 3796 ‘cfv 5198 Topctop 12789 neicnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: neipsm 12948 cnpnei 13013 neibl 13285 |
Copyright terms: Public domain | W3C validator |