Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isneip | GIF version |
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isneip | ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3700 | . . 3 ⊢ (𝑃 ∈ 𝑋 → {𝑃} ⊆ 𝑋) | |
2 | neifval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | isnei 12504 | . . 3 ⊢ ((𝐽 ∈ Top ∧ {𝑃} ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
4 | 1, 3 | sylan2 284 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
5 | snssg 3692 | . . . . . 6 ⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑔 ↔ {𝑃} ⊆ 𝑔)) | |
6 | 5 | anbi1d 461 | . . . . 5 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
7 | 6 | rexbidv 2458 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → (∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | anbi2d 460 | . . 3 ⊢ (𝑃 ∈ 𝑋 → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
9 | 8 | adantl 275 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 ({𝑃} ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
10 | 4, 9 | bitr4d 190 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 ⊆ wss 3102 {csn 3560 ∪ cuni 3772 ‘cfv 5167 Topctop 12355 neicnei 12498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-top 12356 df-nei 12499 |
This theorem is referenced by: neipsm 12514 cnpnei 12579 neibl 12851 |
Copyright terms: Public domain | W3C validator |