ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isneip GIF version

Theorem isneip 13731
Description: The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
isneip ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑃,𝑔   𝑔,𝑋

Proof of Theorem isneip
StepHypRef Expression
1 snssi 3738 . . 3 (𝑃 ∈ 𝑋 β†’ {𝑃} βŠ† 𝑋)
2 neifval.1 . . . 4 𝑋 = βˆͺ 𝐽
32isnei 13729 . . 3 ((𝐽 ∈ Top ∧ {𝑃} βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
41, 3sylan2 286 . 2 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
5 snssg 3728 . . . . . 6 (𝑃 ∈ 𝑋 β†’ (𝑃 ∈ 𝑔 ↔ {𝑃} βŠ† 𝑔))
65anbi1d 465 . . . . 5 (𝑃 ∈ 𝑋 β†’ ((𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁) ↔ ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
76rexbidv 2478 . . . 4 (𝑃 ∈ 𝑋 β†’ (βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁) ↔ βˆƒπ‘” ∈ 𝐽 ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
87anbi2d 464 . . 3 (𝑃 ∈ 𝑋 β†’ ((𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
98adantl 277 . 2 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ ((𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁)) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 ({𝑃} βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
104, 9bitr4d 191 1 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   βŠ† wss 3131  {csn 3594  βˆͺ cuni 3811  β€˜cfv 5218  Topctop 13582  neicnei 13723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-nei 13724
This theorem is referenced by:  neipsm  13739  cnpnei  13804  neibl  14076
  Copyright terms: Public domain W3C validator