ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrrg Unicode version

Theorem isrrg 14095
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isrrg  |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) ) )
Distinct variable groups:    y, B    y, R    y, X
Allowed substitution hints:    .x. ( y)    E( y)    .0. ( y)

Proof of Theorem isrrg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5963 . . . . 5  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
21eqeq1d 2215 . . . 4  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  .0.  <->  ( X  .x.  y )  =  .0.  ) )
32imbi1d 231 . . 3  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) 
<->  ( ( X  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
43ralbidv 2507 . 2  |-  ( x  =  X  ->  ( A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) 
<-> 
A. y  e.  B  ( ( X  .x.  y )  =  .0. 
->  y  =  .0.  ) ) )
5 rrgval.e . . 3  |-  E  =  (RLReg `  R )
6 rrgval.b . . 3  |-  B  =  ( Base `  R
)
7 rrgval.t . . 3  |-  .x.  =  ( .r `  R )
8 rrgval.z . . 3  |-  .0.  =  ( 0g `  R )
95, 6, 7, 8rrgval 14094 . 2  |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  y  =  .0.  ) }
104, 9elrab2 2936 1  |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5279  (class class class)co 5956   Basecbs 12902   .rcmulr 12980   0gc0g 13158  RLRegcrlreg 14087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-ov 5959  df-inn 9052  df-ndx 12905  df-slot 12906  df-base 12908  df-rlreg 14090
This theorem is referenced by:  rrgeq0i  14096  unitrrg  14099
  Copyright terms: Public domain W3C validator