ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgeq0i Unicode version

Theorem rrgeq0i 13744
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgeq0i  |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )

Proof of Theorem rrgeq0i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
2 rrgval.b . . . 4  |-  B  =  ( Base `  R
)
3 rrgval.t . . . 4  |-  .x.  =  ( .r `  R )
4 rrgval.z . . . 4  |-  .0.  =  ( 0g `  R )
51, 2, 3, 4isrrg 13743 . . 3  |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) ) )
65simprbi 275 . 2  |-  ( X  e.  E  ->  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) )
7 oveq2 5918 . . . . 5  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
87eqeq1d 2202 . . . 4  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  .0.  <->  ( X  .x.  Y )  =  .0.  ) )
9 eqeq1 2200 . . . 4  |-  ( y  =  Y  ->  (
y  =  .0.  <->  Y  =  .0.  ) )
108, 9imbi12d 234 . . 3  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  .0. 
->  y  =  .0.  ) 
<->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) ) )
1110rspcv 2860 . 2  |-  ( Y  e.  B  ->  ( A. y  e.  B  ( ( X  .x.  y )  =  .0. 
->  y  =  .0.  )  ->  ( ( X 
.x.  Y )  =  .0.  ->  Y  =  .0.  ) ) )
126, 11mpan9 281 1  |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5246  (class class class)co 5910   Basecbs 12608   .rcmulr 12686   0gc0g 12857  RLRegcrlreg 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fn 5249  df-fv 5254  df-ov 5913  df-inn 8973  df-ndx 12611  df-slot 12612  df-base 12614  df-rlreg 13738
This theorem is referenced by:  rrgeq0  13745  znrrg  14125
  Copyright terms: Public domain W3C validator