ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgeq0i Unicode version

Theorem rrgeq0i 14236
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rrgeq0i  |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )

Proof of Theorem rrgeq0i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4  |-  E  =  (RLReg `  R )
2 rrgval.b . . . 4  |-  B  =  ( Base `  R
)
3 rrgval.t . . . 4  |-  .x.  =  ( .r `  R )
4 rrgval.z . . . 4  |-  .0.  =  ( 0g `  R )
51, 2, 3, 4isrrg 14235 . . 3  |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) ) )
65simprbi 275 . 2  |-  ( X  e.  E  ->  A. y  e.  B  ( ( X  .x.  y )  =  .0.  ->  y  =  .0.  ) )
7 oveq2 6015 . . . . 5  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
87eqeq1d 2238 . . . 4  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  .0.  <->  ( X  .x.  Y )  =  .0.  ) )
9 eqeq1 2236 . . . 4  |-  ( y  =  Y  ->  (
y  =  .0.  <->  Y  =  .0.  ) )
108, 9imbi12d 234 . . 3  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  .0. 
->  y  =  .0.  ) 
<->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) ) )
1110rspcv 2903 . 2  |-  ( Y  e.  B  ->  ( A. y  e.  B  ( ( X  .x.  y )  =  .0. 
->  y  =  .0.  )  ->  ( ( X 
.x.  Y )  =  .0.  ->  Y  =  .0.  ) ) )
126, 11mpan9 281 1  |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0. 
->  Y  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6007   Basecbs 13040   .rcmulr 13119   0gc0g 13297  RLRegcrlreg 14227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-rlreg 14230
This theorem is referenced by:  rrgeq0  14237  znrrg  14632
  Copyright terms: Public domain W3C validator