ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrrg Unicode version

Theorem unitrrg 13833
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
unitrrg.e  |-  E  =  (RLReg `  R )
unitrrg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
unitrrg  |-  ( R  e.  Ring  ->  U  C_  E )

Proof of Theorem unitrrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitrrg.u . . . . . 6  |-  U  =  (Unit `  R )
43a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13613 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  R  e. SRing )
7 simpr 110 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  U )
82, 4, 6, 7unitcld 13674 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  ( Base `  R
) )
9 oveq2 5931 . . . . . 6  |-  ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) ) )
10 eqid 2196 . . . . . . . . . . 11  |-  ( invr `  R )  =  (
invr `  R )
11 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
12 eqid 2196 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
133, 10, 11, 12unitlinv 13692 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) x )  =  ( 1r `  R
) )
1413adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) x )  =  ( 1r
`  R ) )
1514oveq1d 5938 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( 1r `  R
) ( .r `  R ) y ) )
16 simpll 527 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  R  e.  Ring )
173, 10, 1ringinvcl 13691 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( invr `  R ) `  x )  e.  (
Base `  R )
)
1817adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( invr `  R ) `  x )  e.  (
Base `  R )
)
198adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  x  e.  ( Base `  R )
)
20 simpr 110 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  y  e.  ( Base `  R )
)
211, 11ringass 13582 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  x )  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
2216, 18, 19, 20, 21syl13anc 1251 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
231, 11, 12ringlidm 13589 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) y )  =  y )
2423adantlr 477 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( 1r `  R ) ( .r `  R ) y )  =  y )
2515, 22, 243eqtr3d 2237 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( x ( .r `  R ) y ) )  =  y )
26 eqid 2196 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
271, 11, 26ringrz 13610 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2816, 18, 27syl2anc 411 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2925, 28eqeq12d 2211 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) )  <-> 
y  =  ( 0g
`  R ) ) )
309, 29imbitrid 154 . . . . 5  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
x ( .r `  R ) y )  =  ( 0g `  R )  ->  y  =  ( 0g `  R ) ) )
3130ralrimiva 2570 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) )
32 unitrrg.e . . . . 5  |-  E  =  (RLReg `  R )
3332, 1, 11, 26isrrg 13829 . . . 4  |-  ( x  e.  E  <->  ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) ) )
348, 31, 33sylanbrc 417 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  E )
3534ex 115 . 2  |-  ( R  e.  Ring  ->  ( x  e.  U  ->  x  e.  E ) )
3635ssrdv 3190 1  |-  ( R  e.  Ring  ->  U  C_  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5259  (class class class)co 5923   Basecbs 12688   .rcmulr 12766   0gc0g 12937   1rcur 13525  SRingcsrg 13529   Ringcrg 13562  Unitcui 13653   invrcinvr 13686  RLRegcrlreg 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-tpos 6304  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-cmn 13426  df-abl 13427  df-mgp 13487  df-ur 13526  df-srg 13530  df-ring 13564  df-oppr 13634  df-dvdsr 13655  df-unit 13656  df-invr 13687  df-rlreg 13824
This theorem is referenced by:  znrrg  14226
  Copyright terms: Public domain W3C validator