ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrrg Unicode version

Theorem unitrrg 14216
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
unitrrg.e  |-  E  =  (RLReg `  R )
unitrrg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
unitrrg  |-  ( R  e.  Ring  ->  U  C_  E )

Proof of Theorem unitrrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitrrg.u . . . . . 6  |-  U  =  (Unit `  R )
43a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13996 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  R  e. SRing )
7 simpr 110 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  U )
82, 4, 6, 7unitcld 14057 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  ( Base `  R
) )
9 oveq2 6002 . . . . . 6  |-  ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) ) )
10 eqid 2229 . . . . . . . . . . 11  |-  ( invr `  R )  =  (
invr `  R )
11 eqid 2229 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
12 eqid 2229 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
133, 10, 11, 12unitlinv 14075 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) x )  =  ( 1r `  R
) )
1413adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) x )  =  ( 1r
`  R ) )
1514oveq1d 6009 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( 1r `  R
) ( .r `  R ) y ) )
16 simpll 527 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  R  e.  Ring )
173, 10, 1ringinvcl 14074 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( invr `  R ) `  x )  e.  (
Base `  R )
)
1817adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( invr `  R ) `  x )  e.  (
Base `  R )
)
198adantr 276 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  x  e.  ( Base `  R )
)
20 simpr 110 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  y  e.  ( Base `  R )
)
211, 11ringass 13965 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  x )  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
2216, 18, 19, 20, 21syl13anc 1273 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
231, 11, 12ringlidm 13972 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) y )  =  y )
2423adantlr 477 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( 1r `  R ) ( .r `  R ) y )  =  y )
2515, 22, 243eqtr3d 2270 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( x ( .r `  R ) y ) )  =  y )
26 eqid 2229 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
271, 11, 26ringrz 13993 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2816, 18, 27syl2anc 411 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2925, 28eqeq12d 2244 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) )  <-> 
y  =  ( 0g
`  R ) ) )
309, 29imbitrid 154 . . . . 5  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
x ( .r `  R ) y )  =  ( 0g `  R )  ->  y  =  ( 0g `  R ) ) )
3130ralrimiva 2603 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) )
32 unitrrg.e . . . . 5  |-  E  =  (RLReg `  R )
3332, 1, 11, 26isrrg 14212 . . . 4  |-  ( x  e.  E  <->  ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) ) )
348, 31, 33sylanbrc 417 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  E )
3534ex 115 . 2  |-  ( R  e.  Ring  ->  ( x  e.  U  ->  x  e.  E ) )
3635ssrdv 3230 1  |-  ( R  e.  Ring  ->  U  C_  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   0gc0g 13275   1rcur 13908  SRingcsrg 13912   Ringcrg 13945  Unitcui 14036   invrcinvr 14069  RLRegcrlreg 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-srg 13913  df-ring 13947  df-oppr 14017  df-dvdsr 14038  df-unit 14039  df-invr 14070  df-rlreg 14207
This theorem is referenced by:  znrrg  14609
  Copyright terms: Public domain W3C validator