ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstruct2r GIF version

Theorem isstruct2r 12714
Description: The property of being a structure with components in (1st𝑋)...(2nd𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstruct2r (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋)

Proof of Theorem isstruct2r
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . 2 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)))
2 simplr 528 . 2 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → Fun (𝐹 ∖ {∅}))
3 simprr 531 . 2 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → dom 𝐹 ⊆ (...‘𝑋))
4 simprl 529 . . . 4 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹𝑉)
54elexd 2776 . . 3 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 ∈ V)
6 elex 2774 . . . 4 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → 𝑋 ∈ V)
76ad2antrr 488 . . 3 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝑋 ∈ V)
8 simpr 110 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
98eleq1d 2265 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ 𝑋 ∈ ( ≤ ∩ (ℕ × ℕ))))
10 simpl 109 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
1110difeq1d 3281 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑓 ∖ {∅}) = (𝐹 ∖ {∅}))
1211funeqd 5281 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (Fun (𝑓 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})))
1310dmeqd 4869 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → dom 𝑓 = dom 𝐹)
148fveq2d 5565 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (...‘𝑥) = (...‘𝑋))
1513, 14sseq12d 3215 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (dom 𝑓 ⊆ (...‘𝑥) ↔ dom 𝐹 ⊆ (...‘𝑋)))
169, 12, 153anbi123d 1323 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥)) ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
17 df-struct 12705 . . . 4 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
1816, 17brabga 4299 . . 3 ((𝐹 ∈ V ∧ 𝑋 ∈ V) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
195, 7, 18syl2anc 411 . 2 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → (𝐹 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))))
201, 2, 3, 19mpbir3and 1182 1 (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cin 3156  wss 3157  c0 3451  {csn 3623   class class class wbr 4034   × cxp 4662  dom cdm 4664  Fun wfun 5253  cfv 5259  cle 8079  cn 9007  ...cfz 10100   Struct cstr 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-struct 12705
This theorem is referenced by:  isstructr  12718
  Copyright terms: Public domain W3C validator