![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
mpbir3and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir3and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbir3and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mpbir3and.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3jca 1177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | mpbir3and.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: ixxss1 9907 ixxss2 9908 ixxss12 9909 ubioc1 9932 lbico1 9933 lbicc2 9987 ubicc2 9988 elicod 10268 modqelico 10337 zmodfz 10349 modqmuladdim 10370 addmodid 10375 phicl2 12217 isstruct2r 12476 issubmd 12873 mndissubm 12874 submid 12876 0subm 12879 mhmima 12883 mhmeql 12884 issubgrpd2 13064 grpissubg 13068 subgintm 13072 nmzsubg 13084 eqger 13098 eqgcpbl 13102 unitsubm 13326 subrgsubm 13393 subrgugrp 13399 subrgintm 13402 islssmd 13484 lsssubg 13502 islss4 13507 issubrgd 13577 lidlsubg 13605 lmtopcnp 13938 xmeter 14124 tgqioo 14235 suplociccreex 14290 dedekindicc 14299 ivthinclemlopn 14302 ivthinclemuopn 14304 sin0pilem2 14391 pilem3 14392 coseq0q4123 14443 |
Copyright terms: Public domain | W3C validator |