![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
mpbir3and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbir3and.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir3and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbir3and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mpbir3and.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3jca 1179 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | mpbir3and.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ixxss1 9973 ixxss2 9974 ixxss12 9975 ubioc1 9998 lbico1 9999 lbicc2 10053 ubicc2 10054 elicod 10336 modqelico 10408 zmodfz 10420 modqmuladdim 10441 addmodid 10446 phicl2 12355 4sqlem12 12543 isstruct2r 12632 issubmd 13049 mndissubm 13050 submid 13052 subsubm 13058 0subm 13059 mhmima 13066 mhmeql 13067 issubgrpd2 13263 grpissubg 13267 subgintm 13271 nmzsubg 13283 eqger 13297 eqgcpbl 13301 ghmrn 13330 ghmpreima 13339 unitsubm 13618 subrgsubm 13733 subrgugrp 13739 subrgintm 13742 islssmd 13858 lsssubg 13876 islss4 13881 issubrgd 13951 lidlsubg 13985 2idlcpblrng 14022 lmtopcnp 14429 xmeter 14615 tgqioo 14734 suplociccreex 14803 dedekindicc 14812 ivthinclemlopn 14815 ivthinclemuopn 14817 sin0pilem2 14958 pilem3 14959 coseq0q4123 15010 |
Copyright terms: Public domain | W3C validator |