| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) | 
| Ref | Expression | 
|---|---|
| mpbir3and.1 | 
 | 
| mpbir3and.2 | 
 | 
| mpbir3and.3 | 
 | 
| mpbir3and.4 | 
 | 
| Ref | Expression | 
|---|---|
| mpbir3and | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbir3and.1 | 
. . 3
 | |
| 2 | mpbir3and.2 | 
. . 3
 | |
| 3 | mpbir3and.3 | 
. . 3
 | |
| 4 | 1, 2, 3 | 3jca 1179 | 
. 2
 | 
| 5 | mpbir3and.4 | 
. 2
 | |
| 6 | 4, 5 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ixxss1 9979 ixxss2 9980 ixxss12 9981 ubioc1 10004 lbico1 10005 lbicc2 10059 ubicc2 10060 elicod 10354 modqelico 10426 zmodfz 10438 modqmuladdim 10459 addmodid 10464 phicl2 12382 4sqlem12 12571 isstruct2r 12689 issubmd 13106 mndissubm 13107 submid 13109 subsubm 13115 0subm 13116 mhmima 13123 mhmeql 13124 issubgrpd2 13320 grpissubg 13324 subgintm 13328 nmzsubg 13340 eqger 13354 eqgcpbl 13358 ghmrn 13387 ghmpreima 13396 unitsubm 13675 subrgsubm 13790 subrgugrp 13796 subrgintm 13799 islssmd 13915 lsssubg 13933 islss4 13938 issubrgd 14008 lidlsubg 14042 2idlcpblrng 14079 lmtopcnp 14486 xmeter 14672 tgqioo 14791 suplociccreex 14860 dedekindicc 14869 ivthinclemlopn 14872 ivthinclemuopn 14874 sin0pilem2 15018 pilem3 15019 coseq0q4123 15070 | 
| Copyright terms: Public domain | W3C validator |