| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 |
|
| mpbir3and.2 |
|
| mpbir3and.3 |
|
| mpbir3and.4 |
|
| Ref | Expression |
|---|---|
| mpbir3and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 |
. . 3
| |
| 2 | mpbir3and.2 |
. . 3
| |
| 3 | mpbir3and.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1201 |
. 2
|
| 5 | mpbir3and.4 |
. 2
| |
| 6 | 4, 5 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ixxss1 10088 ixxss2 10089 ixxss12 10090 ubioc1 10113 lbico1 10114 lbicc2 10168 ubicc2 10169 elicod 10471 modqelico 10543 zmodfz 10555 modqmuladdim 10576 addmodid 10581 phicl2 12722 4sqlem12 12911 isstruct2r 13029 issubmd 13493 mndissubm 13494 submid 13496 subsubm 13502 0subm 13503 mhmima 13510 mhmeql 13511 issubgrpd2 13713 grpissubg 13717 subgintm 13721 nmzsubg 13733 eqger 13747 eqgcpbl 13751 ghmrn 13780 ghmpreima 13789 unitsubm 14068 subrgsubm 14183 subrgugrp 14189 subrgintm 14192 islssmd 14308 lsssubg 14326 islss4 14331 issubrgd 14401 lidlsubg 14435 2idlcpblrng 14472 mplsubgfi 14650 lmtopcnp 14909 xmeter 15095 tgqioo 15214 suplociccreex 15283 dedekindicc 15292 ivthinclemlopn 15295 ivthinclemuopn 15297 sin0pilem2 15441 pilem3 15442 coseq0q4123 15493 |
| Copyright terms: Public domain | W3C validator |