ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbir3and Unicode version

Theorem mpbir3and 1170
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
Hypotheses
Ref Expression
mpbir3and.1  |-  ( ph  ->  ch )
mpbir3and.2  |-  ( ph  ->  th )
mpbir3and.3  |-  ( ph  ->  ta )
mpbir3and.4  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th  /\  ta )
) )
Assertion
Ref Expression
mpbir3and  |-  ( ph  ->  ps )

Proof of Theorem mpbir3and
StepHypRef Expression
1 mpbir3and.1 . . 3  |-  ( ph  ->  ch )
2 mpbir3and.2 . . 3  |-  ( ph  ->  th )
3 mpbir3and.3 . . 3  |-  ( ph  ->  ta )
41, 2, 33jca 1167 . 2  |-  ( ph  ->  ( ch  /\  th  /\  ta ) )
5 mpbir3and.4 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th  /\  ta )
) )
64, 5mpbird 166 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  ixxss1  9840  ixxss2  9841  ixxss12  9842  ubioc1  9865  lbico1  9866  lbicc2  9920  ubicc2  9921  elicod  10200  modqelico  10269  zmodfz  10281  modqmuladdim  10302  addmodid  10307  phicl2  12146  isstruct2r  12405  lmtopcnp  12890  xmeter  13076  tgqioo  13187  suplociccreex  13242  dedekindicc  13251  ivthinclemlopn  13254  ivthinclemuopn  13256  sin0pilem2  13343  pilem3  13344  coseq0q4123  13395
  Copyright terms: Public domain W3C validator