| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 |
|
| mpbir3and.2 |
|
| mpbir3and.3 |
|
| mpbir3and.4 |
|
| Ref | Expression |
|---|---|
| mpbir3and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 |
. . 3
| |
| 2 | mpbir3and.2 |
. . 3
| |
| 3 | mpbir3and.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1180 |
. 2
|
| 5 | mpbir3and.4 |
. 2
| |
| 6 | 4, 5 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ixxss1 10041 ixxss2 10042 ixxss12 10043 ubioc1 10066 lbico1 10067 lbicc2 10121 ubicc2 10122 elicod 10424 modqelico 10496 zmodfz 10508 modqmuladdim 10529 addmodid 10534 phicl2 12606 4sqlem12 12795 isstruct2r 12913 issubmd 13376 mndissubm 13377 submid 13379 subsubm 13385 0subm 13386 mhmima 13393 mhmeql 13394 issubgrpd2 13596 grpissubg 13600 subgintm 13604 nmzsubg 13616 eqger 13630 eqgcpbl 13634 ghmrn 13663 ghmpreima 13672 unitsubm 13951 subrgsubm 14066 subrgugrp 14072 subrgintm 14075 islssmd 14191 lsssubg 14209 islss4 14214 issubrgd 14284 lidlsubg 14318 2idlcpblrng 14355 mplsubgfi 14533 lmtopcnp 14792 xmeter 14978 tgqioo 15097 suplociccreex 15166 dedekindicc 15175 ivthinclemlopn 15178 ivthinclemuopn 15180 sin0pilem2 15324 pilem3 15325 coseq0q4123 15376 |
| Copyright terms: Public domain | W3C validator |