| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 |
|
| mpbir3and.2 |
|
| mpbir3and.3 |
|
| mpbir3and.4 |
|
| Ref | Expression |
|---|---|
| mpbir3and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 |
. . 3
| |
| 2 | mpbir3and.2 |
. . 3
| |
| 3 | mpbir3and.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3jca 1179 |
. 2
|
| 5 | mpbir3and.4 |
. 2
| |
| 6 | 4, 5 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ixxss1 9996 ixxss2 9997 ixxss12 9998 ubioc1 10021 lbico1 10022 lbicc2 10076 ubicc2 10077 elicod 10371 modqelico 10443 zmodfz 10455 modqmuladdim 10476 addmodid 10481 phicl2 12407 4sqlem12 12596 isstruct2r 12714 issubmd 13176 mndissubm 13177 submid 13179 subsubm 13185 0subm 13186 mhmima 13193 mhmeql 13194 issubgrpd2 13396 grpissubg 13400 subgintm 13404 nmzsubg 13416 eqger 13430 eqgcpbl 13434 ghmrn 13463 ghmpreima 13472 unitsubm 13751 subrgsubm 13866 subrgugrp 13872 subrgintm 13875 islssmd 13991 lsssubg 14009 islss4 14014 issubrgd 14084 lidlsubg 14118 2idlcpblrng 14155 lmtopcnp 14570 xmeter 14756 tgqioo 14875 suplociccreex 14944 dedekindicc 14953 ivthinclemlopn 14956 ivthinclemuopn 14958 sin0pilem2 15102 pilem3 15103 coseq0q4123 15154 |
| Copyright terms: Public domain | W3C validator |