ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbico1 Unicode version

Theorem lbico1 9932
Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 9986. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
lbico1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  e.  ( A [,) B
) )

Proof of Theorem lbico1
StepHypRef Expression
1 simp1 997 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  e.  RR* )
2 xrleid 9802 . . 3  |-  ( A  e.  RR*  ->  A  <_  A )
323ad2ant1 1018 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <_  A )
4 simp3 999 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <  B )
5 elico1 9925 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  e.  ( A [,) B )  <->  ( A  e.  RR*  /\  A  <_  A  /\  A  <  B
) ) )
653adant3 1017 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( A  e.  ( A [,) B )  <->  ( A  e.  RR*  /\  A  <_  A  /\  A  <  B
) ) )
71, 3, 4, 6mpbir3and 1180 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  e.  ( A [,) B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RR*cxr 7993    < clt 7994    <_ cle 7995   [,)cico 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-ico 9896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator