ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccleub Unicode version

Theorem iccleub 9931
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
iccleub  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B
) )  ->  C  <_  B )

Proof of Theorem iccleub
StepHypRef Expression
1 elicc1 9924 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 simp3 999 . . 3  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  C  <_  B )
31, 2syl6bi 163 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  ->  C  <_  B ) )
433impia 1200 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B
) )  ->  C  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RR*cxr 7991    <_ cle 7993   [,]cicc 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-icc 9895
This theorem is referenced by:  cos12dec  11775  suplociccreex  14105  suplociccex  14106  dedekindicc  14114
  Copyright terms: Public domain W3C validator