ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubioc1 Unicode version

Theorem ubioc1 9959
Description: The upper bound belongs to an open-below, closed-above interval. See ubicc2 10015. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
ubioc1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  e.  ( A (,] B
) )

Proof of Theorem ubioc1
StepHypRef Expression
1 simp2 1000 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  e.  RR* )
2 simp3 1001 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <  B )
3 xrleid 9830 . . 3  |-  ( B  e.  RR*  ->  B  <_  B )
433ad2ant2 1021 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  <_  B )
5 elioc1 9952 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  ( A (,] B )  <->  ( B  e.  RR*  /\  A  < 
B  /\  B  <_  B ) ) )
653adant3 1019 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( B  e.  ( A (,] B )  <->  ( B  e.  RR*  /\  A  < 
B  /\  B  <_  B ) ) )
71, 2, 4, 6mpbir3and 1182 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  e.  ( A (,] B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2160   class class class wbr 4018  (class class class)co 5896   RR*cxr 8021    < clt 8022    <_ cle 8023   (,]cioc 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-pre-ltirr 7953
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-ioc 9923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator