HomeHome Intuitionistic Logic Explorer
Theorem List (p. 101 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10001-10100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmodaddmodup 10001 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodaddmodlo 10002 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodqmulmod 10003 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  x.  B )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqmulmodr 10004 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqaddmulmod 10005 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  C  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  ( ( B  mod  M )  x.  C ) )  mod  M )  =  ( ( A  +  ( B  x.  C ) )  mod  M ) )
 
Theoremmodqdi 10006 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B )  mod  ( A  x.  C ) ) )
 
Theoremmodqsubdir 10007 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
 
Theoremmodqeqmodmin 10008 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( A  mod  M )  =  ( ( A  -  M )  mod  M ) )
 
Theoremmodfzo0difsn 10009* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
 0..^ N )  \  { J } ) ) 
 ->  E. i  e.  (
 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
 
Theoremmodsumfzodifsn 10010 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
 
Theoremmodlteq 10011 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 10012 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
3.6.3  Miscellaneous theorems about integers
 
Theoremfrec2uz0d 10013* The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ( G `  (/) )  =  C )
 
Theoremfrec2uzzd 10014* The value of  G (see frec2uz0d 10013) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e. 
 ZZ )
 
Theoremfrec2uzsucd 10015* The value of  G (see frec2uz0d 10013) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  suc  A )  =  ( ( G `
  A )  +  1 ) )
 
Theoremfrec2uzuzd 10016* The value  G (see frec2uz0d 10013) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   =>    |-  ( ph  ->  ( G `  A )  e.  ( ZZ>= `  C )
 )
 
Theoremfrec2uzltd 10017* Less-than relation for  G (see frec2uz0d 10013). (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B ) ) )
 
Theoremfrec2uzlt2d 10018* The mapping  G (see frec2uz0d 10013) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `
  B ) ) )
 
Theoremfrec2uzrand 10019* Range of  G (see frec2uz0d 10013). (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  ran  G  =  ( ZZ>= `  C )
 )
 
Theoremfrec2uzf1od 10020*  G (see frec2uz0d 10013) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G : om
 -1-1-onto-> ( ZZ>= `  C )
 )
 
Theoremfrec2uzisod 10021*  G (see frec2uz0d 10013) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  G  Isom  _E  ,  <  ( om ,  ( ZZ>= `  C ) ) )
 
Theoremfrecuzrdgrrn 10022* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 28-Mar-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ( ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrec2uzrdg 10023* A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function 
F ( x ,  y ) and initial value  A. This lemma shows that evaluating  R at an element of  om gives an ordered pair whose first element is the index (translated from  om to  ( ZZ>= `  C )). See comment in frec2uz0d 10013 which describes  G and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B ) ) >. )
 
Theoremfrecuzrdgrcl 10024* The function  R (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdglem 10025* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )   =>    |-  ( ph  ->  <. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) )
 >.  e.  ran  R )
 
Theoremfrecuzrdgtcl 10026* The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10013 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  T :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0 10027* Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10013 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ph  ->  ( T `  C )  =  A )
 
Theoremfrecuzrdgsuc 10028* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10013 for the description of  G as the mapping from 
om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 28-May-2020.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>=
 `  C )  /\  y  e.  S )
 )  ->  ( x F y )  e.  S )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  C ) ,  y  e.  S  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  T  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( T `  ( B  +  1 ) )  =  ( B F ( T `
  B ) ) )
 
Theoremfrecuzrdgrclt 10029* The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of  S. Similar to frecuzrdgrcl 10024 except that  S and  T need not be the same. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  R : om --> ( ( ZZ>= `  C )  X.  S ) )
 
Theoremfrecuzrdgg 10030* Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating  R at a natural number gives an ordered pair whose first element is the mapping of that natural number via  G. (Contributed by Jim Kingdon, 23-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  N  e.  om )   &    |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  C )   =>    |-  ( ph  ->  ( 1st `  ( R `  N ) )  =  ( G `  N ) )
 
Theoremfrecuzrdgdomlem 10031* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgdom 10032* The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C ) )
 
Theoremfrecuzrdgfunlem 10033* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgfun 10034* The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   =>    |-  ( ph  ->  Fun  ran  R )
 
Theoremfrecuzrdgtclt 10035* The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  P :
 ( ZZ>= `  C ) --> S )
 
Theoremfrecuzrdg0t 10036* Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ph  ->  ( P `  C )  =  A )
 
Theoremfrecuzrdgsuctlem 10037* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10013 for the description of  G as the mapping from  om to  ( ZZ>= `  C ). (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C ) )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `  B ) ) )
 
Theoremfrecuzrdgsuct 10038* Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  S  C_  T )   &    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )   &    |-  ( ph  ->  P  =  ran  R )   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  C )
 )  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
  B ) ) )
 
Theoremuzenom 10039 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  Z  ~~  om )
 
Theoremfrecfzennn 10040 The cardinality of a finite set of sequential integers. (See frec2uz0d 10013 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  NN0  ->  ( 1 ... N ) 
 ~~  ( `' G `  N ) )
 
Theoremfrecfzen2 10041 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( M ... N ) 
 ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
 
Theoremfrechashgf1o 10042  G maps  om one-to-one onto  NN0. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  G : om -1-1-onto-> NN0
 
Theoremfrec2uzled 10043* The mapping  G (see frec2uz0d 10013) preserves order. (Contributed by Jim Kingdon, 24-Feb-2022.)
 |-  ( ph  ->  C  e.  ZZ )   &    |-  G  = frec (
 ( x  e.  ZZ  |->  ( x  +  1
 ) ) ,  C )   &    |-  ( ph  ->  A  e.  om )   &    |-  ( ph  ->  B  e.  om )   =>    |-  ( ph  ->  ( A  C_  B  <->  ( G `  A )  <_  ( G `
  B ) ) )
 
Theoremfzfig 10044 A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e.  Fin )
 
Theoremfzfigd 10045 Deduction form of fzfig 10044. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M ... N )  e.  Fin )
 
Theoremfzofig 10046 Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
 
Theoremnn0ennn 10047 The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
 |- 
 NN0  ~~  NN
 
Theoremnnenom 10048 The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |- 
 NN  ~~  om
 
Theoremnnct 10049  NN is dominated by  om. (Contributed by Thierry Arnoux, 29-Dec-2016.)
 |- 
 NN  ~<_  om
 
Theoremuzennn 10050 An upper integer set is equinumerous to the set of natural numbers. (Contributed by Jim Kingdon, 30-Jul-2023.)
 |-  ( M  e.  ZZ  ->  ( ZZ>= `  M )  ~~  NN )
 
Theoremfnn0nninf 10051* A function from  NN0 into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   =>    |-  ( F  o.  `' G ) : NN0 -->
 
Theoremfxnn0nninf 10052* A function from NN0* into ℕ. (Contributed by Jim Kingdon, 16-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  I :NN0* -->
 
Theorem0tonninf 10053* The mapping of zero into ℕ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  0
 )  =  ( x  e.  om  |->  (/) )
 
Theorem1tonninf 10054* The mapping of one into ℕ is a sequence which is a one followed by zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I `  1
 )  =  ( x  e.  om  |->  if ( x  =  (/) ,  1o ,  (/) ) )
 
Theoreminftonninf 10055* The mapping of +oo into ℕ is the sequence of all ones. (Contributed by Jim Kingdon, 17-Jul-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   &    |-  F  =  ( n  e.  om  |->  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )   &    |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om  X. 
 { 1o } ) >. } )   =>    |-  ( I ` +oo )  =  ( x  e.  om  |->  1o )
 
3.6.4  Strong induction over upper sets of integers
 
Theoremuzsinds 10056* Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  ( ZZ>= `  M )  ->  ( A. y  e.  ( M ... ( x  -  1
 ) ) ps  ->  ph ) )   =>    |-  ( N  e.  ( ZZ>=
 `  M )  ->  ch )
 
Theoremnnsinds 10057* Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN  ->  (
 A. y  e.  (
 1 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN  ->  ch )
 
Theoremnn0sinds 10058* Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  N  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  NN0  ->  ( A. y  e.  (
 0 ... ( x  -  1 ) ) ps 
 ->  ph ) )   =>    |-  ( N  e.  NN0 
 ->  ch )
 
3.6.5  The infinite sequence builder "seq"
 
Syntaxcseq 10059 Extend class notation with recursive sequence builder.
 class  seq M (  .+  ,  F )
 
Definitiondf-seqfrec 10060* Define a general-purpose operation that builds a recursive sequence (i.e., a function on an upper integer set such as  NN or  NN0) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seqf 10075, seq3-1 10074 and seq3p1 10076. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation  +, an input sequence  F with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence  seq 1 (  +  ,  F ) with values 1, 3/2, 7/4, 15/8,.., so that  (  seq 1
(  +  ,  F
) `  1 )  =  1,  (  seq 1 (  +  ,  F ) `  2
)  = 3/2, etc. In other words,  seq M (  +  ,  F ) transforms a sequence  F into an infinite series. 
seq M (  +  ,  F )  ~~>  2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 10901), by climdm 10903 the "sum of F(n) from n = 1 to infinity" can be expressed as  (  ~~>  `  seq 1
(  +  ,  F
) ) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the frec function generates as its values a set of ordered pairs starting at 
<. M ,  ( F `
 M ) >., with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by NM, 18-Apr-2005.) (Revised by Jim Kingdon, 4-Nov-2022.)

 |- 
 seq M (  .+  ,  F )  =  ran frec ( ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( y 
 .+  ( F `  ( x  +  1
 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseqex 10061 Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |- 
 seq M (  .+  ,  F )  e.  _V
 
Theoremseqeq1 10062 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( M  =  N  ->  seq M (  .+  ,  F )  =  seq N (  .+  ,  F ) )
 
Theoremseqeq2 10063 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  (  .+  =  Q  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseqeq3 10064 Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
 |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
 
Theoremseqeq1d 10065 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq A (  .+  ,  F )  =  seq B ( 
 .+  ,  F )
 )
 
Theoremseqeq2d 10066 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M ( A ,  F )  =  seq M ( B ,  F ) )
 
Theoremseqeq3d 10067 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  seq M (  .+  ,  A )  =  seq M ( 
 .+  ,  B )
 )
 
Theoremseqeq123d 10068 Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
 |-  ( ph  ->  M  =  N )   &    |-  ( ph  ->  .+  =  Q )   &    |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq N ( Q ,  G ) )
 
Theoremnfseq 10069 Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x M   &    |-  F/_ x  .+   &    |-  F/_ x F   =>    |-  F/_ x  seq M (  .+  ,  F )
 
Theoremiseqovex 10070* Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  S )
 
Theoremiseqvalcbv 10071* Changing the bound variables in an expression which appears in some  seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |- frec
 ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  T  |->  <. ( a  +  1 ) ,  (
 a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseq3val 10072* Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10075, seq3-1 10074 and seq3p1 10076, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseqvalcd 10073* Value of the sequence builder function. Similar to seq3val 10072 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseq3-1 10074* Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqf 10075* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
 
Theoremseq3p1 10076* Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseqovcd 10077* A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10078 and seq1cd 10079 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  C )
 
Theoremseqf2 10078* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
 
Theoremseq1cd 10079* Initial value of the recursive sequence builder. A version of seq3-1 10074 which provides two classes 
D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqp1cd 10080* Value of the sequence builder function at a successor. A version of seq3p1 10076 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1
 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseq3clss 10081* Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  T )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ph  ->  S 
 C_  T )   &    |-  (
 ( ph  /\  ( x  e.  T  /\  y  e.  T ) )  ->  ( x  .+  y )  e.  T )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  e.  S )
 
Theoremseq3m1 10082* Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
Theoremseq3fveq2 10083* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  k  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq K (  .+  ,  G ) `  N ) )
 
Theoremseq3feq2 10084* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  K ) )  = 
 seq K (  .+  ,  G ) )
 
Theoremseq3fveq 10085* Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseq3feq 10086* Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  ( G `  k ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( 
 .+  ,  G )
 )
 
Theoremseq3shft2 10087* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =  ( G `
  ( k  +  K ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) ) 
 ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  (  seq ( M  +  K ) (  .+  ,  G ) `  ( N  +  K ) ) )
 
Theoremserf 10088* An infinite series of complex terms is a function from  NN to  CC. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
 
Theoremserfre 10089* An infinite series of real numbers is a function from  NN to  RR. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
 
Theoremmonoord 10090* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  M ) 
 <_  ( F `  N ) )
 
Theoremmonoord2 10091* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  (
 k  +  1 ) )  <_  ( F `  k ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  ( F `  M ) )
 
Theoremser3mono 10092* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  RR )   &    |-  ( ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  0  <_  ( F `  x ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  K )  <_  (  seq M (  +  ,  F ) `  N ) )
 
Theoremseq3split 10093* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K ) )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  ( 
 seq K (  .+  ,  F ) `  N )  =  ( (  seq K (  .+  ,  F ) `  M )  .+  (  seq ( M  +  1 )
 (  .+  ,  F ) `  N ) ) )
 
Theoremseq3-1p 10094* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( ( F `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F ) `  N ) ) )
 
Theoremseq3caopr3 10095* Lemma for seq3caopr2 10096. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   &    |-  ( ( ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n ) Q (  seq M ( 
 .+  ,  G ) `  n ) )  .+  ( ( F `  ( n  +  1
 ) ) Q ( G `  ( n  +  1 ) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `
  n )  .+  ( F `  ( n  +  1 ) ) ) Q ( ( 
 seq M (  .+  ,  G ) `  n )  .+  ( G `  ( n  +  1
 ) ) ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr2 10096* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ( ph  /\  ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 ) )  ->  (
 ( x Q z )  .+  ( y Q w ) )  =  ( ( x 
 .+  y ) Q ( z  .+  w ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr 10097* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  .+  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `
  N )  .+  (  seq M (  .+  ,  G ) `  N ) ) )
 
Theoremiseqf1olemkle 10098* Lemma for seq3f1o 10118. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  K  <_  ( `' J `  K ) )
 
Theoremiseqf1olemklt 10099* Lemma for seq3f1o 10118. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   =>    |-  ( ph  ->  K  <  ( `' J `  K ) )
 
Theoremiseqf1olemqcl 10100 Lemma for seq3f1o 10118. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   =>    |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `
  A ) )  e.  ( M ... N ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >