![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lelttrdi | GIF version |
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
Ref | Expression |
---|---|
lelttrdi.r | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
lelttrdi.l | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
lelttrdi | ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrdi.r | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
2 | 1 | simp1d 961 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | adantr 272 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
4 | 1 | simp2d 962 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 4 | adantr 272 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
6 | 1 | simp3d 963 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
7 | 6 | adantr 272 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ) |
8 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | lelttrdi.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
10 | 9 | adantr 272 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐶) |
11 | 3, 5, 7, 8, 10 | ltletrd 8052 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐶) |
12 | 11 | ex 114 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 930 ∈ wcel 1448 class class class wbr 3875 ℝcr 7499 < clt 7672 ≤ cle 7673 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-pre-ltwlin 7608 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-cnv 4485 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 |
This theorem is referenced by: subfzo0 9860 |
Copyright terms: Public domain | W3C validator |