| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lelttrdi | GIF version | ||
| Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| lelttrdi.r | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
| lelttrdi.l | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| lelttrdi | ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lelttrdi.r | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | |
| 2 | 1 | simp1d 1033 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 4 | 1 | simp2d 1034 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 6 | 1 | simp3d 1035 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐶 ∈ ℝ) |
| 8 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 9 | lelttrdi.l | . . . 4 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 10 | 9 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ≤ 𝐶) |
| 11 | 3, 5, 7, 8, 10 | ltletrd 8566 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐶) |
| 12 | 11 | ex 115 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltwlin 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: difgtsumgt 9512 subfzo0 10443 |
| Copyright terms: Public domain | W3C validator |