ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi GIF version

Theorem lelttrdi 8386
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
lelttrdi.l (𝜑𝐵𝐶)
Assertion
Ref Expression
lelttrdi (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
21simp1d 1009 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 276 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
41simp2d 1010 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 276 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
61simp3d 1011 . . . 4 (𝜑𝐶 ∈ ℝ)
76adantr 276 . . 3 ((𝜑𝐴 < 𝐵) → 𝐶 ∈ ℝ)
8 simpr 110 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 lelttrdi.l . . . 4 (𝜑𝐵𝐶)
109adantr 276 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵𝐶)
113, 5, 7, 8, 10ltletrd 8383 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐶)
1211ex 115 1 (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148   class class class wbr 4005  cr 7813   < clt 7995  cle 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-pre-ltwlin 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001
This theorem is referenced by:  difgtsumgt  9325  subfzo0  10245
  Copyright terms: Public domain W3C validator