ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrdi GIF version

Theorem lelttrdi 8181
Description: If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.)
Hypotheses
Ref Expression
lelttrdi.r (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
lelttrdi.l (𝜑𝐵𝐶)
Assertion
Ref Expression
lelttrdi (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))

Proof of Theorem lelttrdi
StepHypRef Expression
1 lelttrdi.r . . . . 5 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
21simp1d 993 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 274 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
41simp2d 994 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 274 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
61simp3d 995 . . . 4 (𝜑𝐶 ∈ ℝ)
76adantr 274 . . 3 ((𝜑𝐴 < 𝐵) → 𝐶 ∈ ℝ)
8 simpr 109 . . 3 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 lelttrdi.l . . . 4 (𝜑𝐵𝐶)
109adantr 274 . . 3 ((𝜑𝐴 < 𝐵) → 𝐵𝐶)
113, 5, 7, 8, 10ltletrd 8178 . 2 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐶)
1211ex 114 1 (𝜑 → (𝐴 < 𝐵𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wcel 1480   class class class wbr 3924  cr 7612   < clt 7793  cle 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltwlin 7726
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799
This theorem is referenced by:  subfzo0  10012
  Copyright terms: Public domain W3C validator