ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difgtsumgt Unicode version

Theorem difgtsumgt 9260
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difgtsumgt  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )

Proof of Theorem difgtsumgt
StepHypRef Expression
1 recn 7886 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
2 nn0cn 9124 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 336 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1007 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 negsub 8146 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  =  ( A  -  B ) )
76eqcomd 2171 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  -  B )  =  ( A  +  -u B ) )
87breq2d 3994 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  <->  C  <  ( A  +  -u B
) ) )
9 simp3 989 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  C  e.  RR )
10 simp1 987 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  A  e.  RR )
11 nn0re 9123 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  RR )
1211renegcld 8278 . . . . . 6  |-  ( B  e.  NN0  ->  -u B  e.  RR )
13123ad2ant2 1009 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  e.  RR )
1410, 13readdcld 7928 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  e.  RR )
15113ad2ant2 1009 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  B  e.  RR )
1610, 15readdcld 7928 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  B )  e.  RR )
179, 14, 163jca 1167 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  e.  RR  /\  ( A  +  -u B )  e.  RR  /\  ( A  +  B )  e.  RR ) )
18 nn0negleid 9259 . . . . 5  |-  ( B  e.  NN0  ->  -u B  <_  B )
19183ad2ant2 1009 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  <_  B )
2013, 15, 10, 19leadd2dd 8458 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  <_  ( A  +  B ) )
2117, 20lelttrdi 8324 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  +  -u B )  ->  C  <  ( A  +  B
) ) )
228, 21sylbid 149 1  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   NN0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115
This theorem is referenced by:  difsqpwdvds  12269
  Copyright terms: Public domain W3C validator