ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difgtsumgt Unicode version

Theorem difgtsumgt 9386
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difgtsumgt  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )

Proof of Theorem difgtsumgt
StepHypRef Expression
1 recn 8005 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
2 nn0cn 9250 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 338 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1019 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 negsub 8267 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  =  ( A  -  B ) )
76eqcomd 2199 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  -  B )  =  ( A  +  -u B ) )
87breq2d 4041 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  <->  C  <  ( A  +  -u B
) ) )
9 simp3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  C  e.  RR )
10 simp1 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  A  e.  RR )
11 nn0re 9249 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  RR )
1211renegcld 8399 . . . . . 6  |-  ( B  e.  NN0  ->  -u B  e.  RR )
13123ad2ant2 1021 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  e.  RR )
1410, 13readdcld 8049 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  e.  RR )
15113ad2ant2 1021 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  B  e.  RR )
1610, 15readdcld 8049 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  B )  e.  RR )
179, 14, 163jca 1179 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  e.  RR  /\  ( A  +  -u B )  e.  RR  /\  ( A  +  B )  e.  RR ) )
18 nn0negleid 9385 . . . . 5  |-  ( B  e.  NN0  ->  -u B  <_  B )
19183ad2ant2 1021 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  <_  B )
2013, 15, 10, 19leadd2dd 8579 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  <_  ( A  +  B ) )
2117, 20lelttrdi 8445 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  +  -u B )  ->  C  <  ( A  +  B
) ) )
228, 21sylbid 150 1  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   -ucneg 8191   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241
This theorem is referenced by:  difsqpwdvds  12476
  Copyright terms: Public domain W3C validator