ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difgtsumgt Unicode version

Theorem difgtsumgt 9281
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difgtsumgt  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )

Proof of Theorem difgtsumgt
StepHypRef Expression
1 recn 7907 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
2 nn0cn 9145 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 336 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1012 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 negsub 8167 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  =  ( A  -  B ) )
76eqcomd 2176 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  -  B )  =  ( A  +  -u B ) )
87breq2d 4001 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  <->  C  <  ( A  +  -u B
) ) )
9 simp3 994 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  C  e.  RR )
10 simp1 992 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  A  e.  RR )
11 nn0re 9144 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  RR )
1211renegcld 8299 . . . . . 6  |-  ( B  e.  NN0  ->  -u B  e.  RR )
13123ad2ant2 1014 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  e.  RR )
1410, 13readdcld 7949 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  e.  RR )
15113ad2ant2 1014 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  B  e.  RR )
1610, 15readdcld 7949 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  B )  e.  RR )
179, 14, 163jca 1172 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  e.  RR  /\  ( A  +  -u B )  e.  RR  /\  ( A  +  B )  e.  RR ) )
18 nn0negleid 9280 . . . . 5  |-  ( B  e.  NN0  ->  -u B  <_  B )
19183ad2ant2 1014 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  <_  B )
2013, 15, 10, 19leadd2dd 8479 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  <_  ( A  +  B ) )
2117, 20lelttrdi 8345 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  +  -u B )  ->  C  <  ( A  +  B
) ) )
228, 21sylbid 149 1  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773    + caddc 7777    < clt 7954    <_ cle 7955    - cmin 8090   -ucneg 8091   NN0cn0 9135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136
This theorem is referenced by:  difsqpwdvds  12291
  Copyright terms: Public domain W3C validator