ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difgtsumgt Unicode version

Theorem difgtsumgt 9395
Description: If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
difgtsumgt  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )

Proof of Theorem difgtsumgt
StepHypRef Expression
1 recn 8012 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
2 nn0cn 9259 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  CC )
31, 2anim12i 338 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  NN0 )  -> 
( A  e.  CC  /\  B  e.  CC ) )
433adant3 1019 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 negsub 8274 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
64, 5syl 14 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  =  ( A  -  B ) )
76eqcomd 2202 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  -  B )  =  ( A  +  -u B ) )
87breq2d 4045 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  <->  C  <  ( A  +  -u B
) ) )
9 simp3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  C  e.  RR )
10 simp1 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  A  e.  RR )
11 nn0re 9258 . . . . . . 7  |-  ( B  e.  NN0  ->  B  e.  RR )
1211renegcld 8406 . . . . . 6  |-  ( B  e.  NN0  ->  -u B  e.  RR )
13123ad2ant2 1021 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  e.  RR )
1410, 13readdcld 8056 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  e.  RR )
15113ad2ant2 1021 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  B  e.  RR )
1610, 15readdcld 8056 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  B )  e.  RR )
179, 14, 163jca 1179 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  e.  RR  /\  ( A  +  -u B )  e.  RR  /\  ( A  +  B )  e.  RR ) )
18 nn0negleid 9394 . . . . 5  |-  ( B  e.  NN0  ->  -u B  <_  B )
19183ad2ant2 1021 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  -u B  <_  B )
2013, 15, 10, 19leadd2dd 8587 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( A  +  -u B )  <_  ( A  +  B ) )
2117, 20lelttrdi 8453 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  +  -u B )  ->  C  <  ( A  +  B
) ) )
228, 21sylbid 150 1  |-  ( ( A  e.  RR  /\  B  e.  NN0  /\  C  e.  RR )  ->  ( C  <  ( A  -  B )  ->  C  <  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250
This theorem is referenced by:  difsqpwdvds  12507
  Copyright terms: Public domain W3C validator