| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp1 999 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp1bi 1014 erinxp 6695 exmidapne 7371 addcanprleml 7726 addcanprlemu 7727 ltmprr 7754 lelttrdi 8498 ixxdisj 10024 ixxss1 10025 ixxss2 10026 ixxss12 10027 iccss2 10065 iocssre 10074 icossre 10075 iccssre 10076 icodisj 10113 iccf1o 10125 fzen 10164 ioom 10401 intfracq 10463 flqdiv 10464 mulqaddmodid 10507 modsumfzodifsn 10539 addmodlteq 10541 remul 11154 sumtp 11696 crth 12517 phimullem 12518 eulerthlem1 12520 eulerthlemfi 12521 eulerthlemrprm 12522 eulerthlema 12523 eulerthlemh 12524 eulerthlemth 12525 ctiunct 12782 strsetsid 12836 strleund 12906 strext 12908 mhmf 13268 submss 13279 eqger 13531 eqgcpbl 13535 lmodvscl 14038 lssssg 14093 rnglidlmsgrp 14230 2idlcpblrng 14256 lmfpm 14686 lmff 14692 lmtopcnp 14693 xmeter 14879 tgqioo 14998 ivthinclemlopn 15079 ivthinclemuopn 15081 limcimolemlt 15107 limcresi 15109 cosordlem 15292 relogbval 15394 relogbzcl 15395 nnlogbexp 15402 perfectlem2 15443 |
| Copyright terms: Public domain | W3C validator |