| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp1 1000 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp1bi 1015 erinxp 6696 exmidapne 7372 addcanprleml 7727 addcanprlemu 7728 ltmprr 7755 lelttrdi 8499 ixxdisj 10025 ixxss1 10026 ixxss2 10027 ixxss12 10028 iccss2 10066 iocssre 10075 icossre 10076 iccssre 10077 icodisj 10114 iccf1o 10126 fzen 10165 ioom 10403 intfracq 10465 flqdiv 10466 mulqaddmodid 10509 modsumfzodifsn 10541 addmodlteq 10543 remul 11183 sumtp 11725 crth 12546 phimullem 12547 eulerthlem1 12549 eulerthlemfi 12550 eulerthlemrprm 12551 eulerthlema 12552 eulerthlemh 12553 eulerthlemth 12554 ctiunct 12811 strsetsid 12865 strleund 12935 strext 12937 mhmf 13297 submss 13308 eqger 13560 eqgcpbl 13564 lmodvscl 14067 lssssg 14122 rnglidlmsgrp 14259 2idlcpblrng 14285 lmfpm 14715 lmff 14721 lmtopcnp 14722 xmeter 14908 tgqioo 15027 ivthinclemlopn 15108 ivthinclemuopn 15110 limcimolemlt 15136 limcresi 15138 cosordlem 15321 relogbval 15423 relogbzcl 15424 nnlogbexp 15431 perfectlem2 15472 |
| Copyright terms: Public domain | W3C validator |