| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp1 1000 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp1bi 1015 erinxp 6714 exmidapne 7402 addcanprleml 7757 addcanprlemu 7758 ltmprr 7785 lelttrdi 8529 ixxdisj 10055 ixxss1 10056 ixxss2 10057 ixxss12 10058 iccss2 10096 iocssre 10105 icossre 10106 iccssre 10107 icodisj 10144 iccf1o 10156 fzen 10195 ioom 10435 intfracq 10497 flqdiv 10498 mulqaddmodid 10541 modsumfzodifsn 10573 addmodlteq 10575 remul 11268 sumtp 11810 crth 12631 phimullem 12632 eulerthlem1 12634 eulerthlemfi 12635 eulerthlemrprm 12636 eulerthlema 12637 eulerthlemh 12638 eulerthlemth 12639 ctiunct 12896 strsetsid 12950 strleund 13020 strext 13022 mhmf 13382 submss 13393 eqger 13645 eqgcpbl 13649 lmodvscl 14152 lssssg 14207 rnglidlmsgrp 14344 2idlcpblrng 14370 lmfpm 14800 lmff 14806 lmtopcnp 14807 xmeter 14993 tgqioo 15112 ivthinclemlopn 15193 ivthinclemuopn 15195 limcimolemlt 15221 limcresi 15223 cosordlem 15406 relogbval 15508 relogbzcl 15509 nnlogbexp 15516 perfectlem2 15557 |
| Copyright terms: Public domain | W3C validator |