| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp1 1021 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp1bi 1036 erinxp 6754 exmidapne 7442 addcanprleml 7797 addcanprlemu 7798 ltmprr 7825 lelttrdi 8569 ixxdisj 10095 ixxss1 10096 ixxss2 10097 ixxss12 10098 iccss2 10136 iocssre 10145 icossre 10146 iccssre 10147 icodisj 10184 iccf1o 10196 fzen 10235 ioom 10475 intfracq 10537 flqdiv 10538 mulqaddmodid 10581 modsumfzodifsn 10613 addmodlteq 10615 remul 11378 sumtp 11920 crth 12741 phimullem 12742 eulerthlem1 12744 eulerthlemfi 12745 eulerthlemrprm 12746 eulerthlema 12747 eulerthlemh 12748 eulerthlemth 12749 ctiunct 13006 strsetsid 13060 strleund 13131 strext 13133 mhmf 13493 submss 13504 eqger 13756 eqgcpbl 13760 lmodvscl 14263 lssssg 14318 rnglidlmsgrp 14455 2idlcpblrng 14481 lmfpm 14911 lmff 14917 lmtopcnp 14918 xmeter 15104 tgqioo 15223 ivthinclemlopn 15304 ivthinclemuopn 15306 limcimolemlt 15332 limcresi 15334 cosordlem 15517 relogbval 15619 relogbzcl 15620 nnlogbexp 15627 perfectlem2 15668 wlkfg 16033 |
| Copyright terms: Public domain | W3C validator |