![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1d | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simp1d |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp1 999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp1bi 1014 erinxp 6663 exmidapne 7320 addcanprleml 7674 addcanprlemu 7675 ltmprr 7702 lelttrdi 8445 ixxdisj 9969 ixxss1 9970 ixxss2 9971 ixxss12 9972 iccss2 10010 iocssre 10019 icossre 10020 iccssre 10021 icodisj 10058 iccf1o 10070 fzen 10109 ioom 10329 intfracq 10391 flqdiv 10392 mulqaddmodid 10435 modsumfzodifsn 10467 addmodlteq 10469 remul 11016 sumtp 11557 crth 12362 phimullem 12363 eulerthlem1 12365 eulerthlemfi 12366 eulerthlemrprm 12367 eulerthlema 12368 eulerthlemh 12369 eulerthlemth 12370 ctiunct 12597 strsetsid 12651 strleund 12721 strext 12723 mhmf 13037 submss 13048 eqger 13294 eqgcpbl 13298 lmodvscl 13801 lssssg 13856 rnglidlmsgrp 13993 2idlcpblrng 14019 lmfpm 14411 lmff 14417 lmtopcnp 14418 xmeter 14604 tgqioo 14715 ivthinclemlopn 14790 ivthinclemuopn 14792 limcimolemlt 14818 limcresi 14820 cosordlem 14984 relogbval 15083 relogbzcl 15084 nnlogbexp 15091 |
Copyright terms: Public domain | W3C validator |