![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmod0vid | Unicode version |
Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
0vlid.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
0vlid.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
0vlid.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lmod0vid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 13384 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0vlid.v |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 0vlid.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 0vlid.z |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | grpid 12912 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | sylan 283 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fn 5220 df-fv 5225 df-riota 5831 df-ov 5878 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-ndx 12465 df-slot 12466 df-base 12468 df-plusg 12549 df-mulr 12550 df-sca 12552 df-vsca 12553 df-0g 12707 df-mgm 12775 df-sgrp 12808 df-mnd 12818 df-grp 12880 df-lmod 13379 |
This theorem is referenced by: lmod0vs 13411 |
Copyright terms: Public domain | W3C validator |