| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodgrp | Unicode version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | eqid 2196 |
. . 3
| |
| 3 | eqid 2196 |
. . 3
| |
| 4 | eqid 2196 |
. . 3
| |
| 5 | eqid 2196 |
. . 3
| |
| 6 | eqid 2196 |
. . 3
| |
| 7 | eqid 2196 |
. . 3
| |
| 8 | eqid 2196 |
. . 3
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13923 |
. 2
|
| 10 | 9 | simp1bi 1014 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-lmod 13921 |
| This theorem is referenced by: lmodgrpd 13929 lmodbn0 13930 lmodvacl 13934 lmodass 13935 lmodlcan 13936 lmod0vcl 13949 lmod0vlid 13950 lmod0vrid 13951 lmod0vid 13952 lmodvsmmulgdi 13955 lmodfopnelem1 13956 lmodfopne 13958 lmodvnegcl 13960 lmodvnegid 13961 lmodvsubcl 13964 lmodcom 13965 lmodabl 13966 lmodvpncan 13972 lmodvnpcan 13973 lmodsubeq0 13978 lmodsubid 13979 lmodprop2d 13980 lss1 13994 lsssubg 14009 islss3 14011 lspsnneg 14052 lspsnsub 14053 lmodindp1 14060 |
| Copyright terms: Public domain | W3C validator |