| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodgrp | Unicode version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | eqid 2229 |
. . 3
| |
| 3 | eqid 2229 |
. . 3
| |
| 4 | eqid 2229 |
. . 3
| |
| 5 | eqid 2229 |
. . 3
| |
| 6 | eqid 2229 |
. . 3
| |
| 7 | eqid 2229 |
. . 3
| |
| 8 | eqid 2229 |
. . 3
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 14249 |
. 2
|
| 10 | 9 | simp1bi 1036 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-lmod 14247 |
| This theorem is referenced by: lmodgrpd 14255 lmodbn0 14256 lmodvacl 14260 lmodass 14261 lmodlcan 14262 lmod0vcl 14275 lmod0vlid 14276 lmod0vrid 14277 lmod0vid 14278 lmodvsmmulgdi 14281 lmodfopnelem1 14282 lmodfopne 14284 lmodvnegcl 14286 lmodvnegid 14287 lmodvsubcl 14290 lmodcom 14291 lmodabl 14292 lmodvpncan 14298 lmodvnpcan 14299 lmodsubeq0 14304 lmodsubid 14305 lmodprop2d 14306 lss1 14320 lsssubg 14335 islss3 14337 lspsnneg 14378 lspsnsub 14379 lmodindp1 14386 |
| Copyright terms: Public domain | W3C validator |