ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodgrp Unicode version

Theorem lmodgrp 14141
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
Assertion
Ref Expression
lmodgrp  |-  ( W  e.  LMod  ->  W  e. 
Grp )

Proof of Theorem lmodgrp
Dummy variables  r  q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2206 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2206 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 eqid 2206 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2206 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2206 . . 3  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
7 eqid 2206 . . 3  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
8 eqid 2206 . . 3  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
91, 2, 3, 4, 5, 6, 7, 8islmod 14138 . 2  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  (Scalar `  W
)  e.  Ring  /\  A. q  e.  ( Base `  (Scalar `  W )
) A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) ) )
109simp1bi 1015 1  |-  ( W  e.  LMod  ->  W  e. 
Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   .rcmulr 12995  Scalarcsca 12997   .scvsca 12998   Grpcgrp 13417   1rcur 13806   Ringcrg 13843   LModclmod 14134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-mulr 13008  df-sca 13010  df-vsca 13011  df-lmod 14136
This theorem is referenced by:  lmodgrpd  14144  lmodbn0  14145  lmodvacl  14149  lmodass  14150  lmodlcan  14151  lmod0vcl  14164  lmod0vlid  14165  lmod0vrid  14166  lmod0vid  14167  lmodvsmmulgdi  14170  lmodfopnelem1  14171  lmodfopne  14173  lmodvnegcl  14175  lmodvnegid  14176  lmodvsubcl  14179  lmodcom  14180  lmodabl  14181  lmodvpncan  14187  lmodvnpcan  14188  lmodsubeq0  14193  lmodsubid  14194  lmodprop2d  14195  lss1  14209  lsssubg  14224  islss3  14226  lspsnneg  14267  lspsnsub  14268  lmodindp1  14275
  Copyright terms: Public domain W3C validator