ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodgrp Unicode version

Theorem lmodgrp 13793
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
Assertion
Ref Expression
lmodgrp  |-  ( W  e.  LMod  ->  W  e. 
Grp )

Proof of Theorem lmodgrp
Dummy variables  r  q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2193 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2193 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 eqid 2193 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2193 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
6 eqid 2193 . . 3  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
7 eqid 2193 . . 3  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
8 eqid 2193 . . 3  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
91, 2, 3, 4, 5, 6, 7, 8islmod 13790 . 2  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  (Scalar `  W
)  e.  Ring  /\  A. q  e.  ( Base `  (Scalar `  W )
) A. r  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( ( q ( .s `  W
) w ) ( +g  `  W ) ( r ( .s
`  W ) w ) ) )  /\  ( ( ( q ( .r `  (Scalar `  W ) ) r ) ( .s `  W ) w )  =  ( q ( .s `  W ) ( r ( .s
`  W ) w ) )  /\  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) w )  =  w ) ) ) )
109simp1bi 1014 1  |-  ( W  e.  LMod  ->  W  e. 
Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Scalarcsca 12701   .scvsca 12702   Grpcgrp 13075   1rcur 13458   Ringcrg 13495   LModclmod 13786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-lmod 13788
This theorem is referenced by:  lmodgrpd  13796  lmodbn0  13797  lmodvacl  13801  lmodass  13802  lmodlcan  13803  lmod0vcl  13816  lmod0vlid  13817  lmod0vrid  13818  lmod0vid  13819  lmodvsmmulgdi  13822  lmodfopnelem1  13823  lmodfopne  13825  lmodvnegcl  13827  lmodvnegid  13828  lmodvsubcl  13831  lmodcom  13832  lmodabl  13833  lmodvpncan  13839  lmodvnpcan  13840  lmodsubeq0  13845  lmodsubid  13846  lmodprop2d  13847  lss1  13861  lsssubg  13876  islss3  13878  lspsnneg  13919  lspsnsub  13920  lmodindp1  13927
  Copyright terms: Public domain W3C validator