| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodgrp | Unicode version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | eqid 2204 |
. . 3
| |
| 3 | eqid 2204 |
. . 3
| |
| 4 | eqid 2204 |
. . 3
| |
| 5 | eqid 2204 |
. . 3
| |
| 6 | eqid 2204 |
. . 3
| |
| 7 | eqid 2204 |
. . 3
| |
| 8 | eqid 2204 |
. . 3
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 13995 |
. 2
|
| 10 | 9 | simp1bi 1014 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-lmod 13993 |
| This theorem is referenced by: lmodgrpd 14001 lmodbn0 14002 lmodvacl 14006 lmodass 14007 lmodlcan 14008 lmod0vcl 14021 lmod0vlid 14022 lmod0vrid 14023 lmod0vid 14024 lmodvsmmulgdi 14027 lmodfopnelem1 14028 lmodfopne 14030 lmodvnegcl 14032 lmodvnegid 14033 lmodvsubcl 14036 lmodcom 14037 lmodabl 14038 lmodvpncan 14044 lmodvnpcan 14045 lmodsubeq0 14050 lmodsubid 14051 lmodprop2d 14052 lss1 14066 lsssubg 14081 islss3 14083 lspsnneg 14124 lspsnsub 14125 lmodindp1 14132 |
| Copyright terms: Public domain | W3C validator |