| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodgrp | Unicode version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . 3
| |
| 2 | eqid 2206 |
. . 3
| |
| 3 | eqid 2206 |
. . 3
| |
| 4 | eqid 2206 |
. . 3
| |
| 5 | eqid 2206 |
. . 3
| |
| 6 | eqid 2206 |
. . 3
| |
| 7 | eqid 2206 |
. . 3
| |
| 8 | eqid 2206 |
. . 3
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 14138 |
. 2
|
| 10 | 9 | simp1bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-ov 5965 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-mulr 13008 df-sca 13010 df-vsca 13011 df-lmod 14136 |
| This theorem is referenced by: lmodgrpd 14144 lmodbn0 14145 lmodvacl 14149 lmodass 14150 lmodlcan 14151 lmod0vcl 14164 lmod0vlid 14165 lmod0vrid 14166 lmod0vid 14167 lmodvsmmulgdi 14170 lmodfopnelem1 14171 lmodfopne 14173 lmodvnegcl 14175 lmodvnegid 14176 lmodvsubcl 14179 lmodcom 14180 lmodabl 14181 lmodvpncan 14187 lmodvnpcan 14188 lmodsubeq0 14193 lmodsubid 14194 lmodprop2d 14195 lss1 14209 lsssubg 14224 islss3 14226 lspsnneg 14267 lspsnsub 14268 lmodindp1 14275 |
| Copyright terms: Public domain | W3C validator |