| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmod0vs | Unicode version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v |
|
| lmod0vs.f |
|
| lmod0vs.s |
|
| lmod0vs.o |
|
| lmod0vs.z |
|
| Ref | Expression |
|---|---|
| lmod0vs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | lmod0vs.f |
. . . . . . . 8
| |
| 3 | 2 | lmodring 14172 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eqid 2207 |
. . . . . . 7
| |
| 6 | lmod0vs.o |
. . . . . . 7
| |
| 7 | 5, 6 | ring0cl 13898 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | lmod0vs.v |
. . . . . 6
| |
| 11 | eqid 2207 |
. . . . . 6
| |
| 12 | lmod0vs.s |
. . . . . 6
| |
| 13 | eqid 2207 |
. . . . . 6
| |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 14189 |
. . . . 5
|
| 15 | 1, 8, 8, 9, 14 | syl13anc 1252 |
. . . 4
|
| 16 | ringgrp 13878 |
. . . . . . 7
| |
| 17 | 4, 16 | syl 14 |
. . . . . 6
|
| 18 | 5, 13, 6 | grplid 13478 |
. . . . . 6
|
| 19 | 17, 8, 18 | syl2anc 411 |
. . . . 5
|
| 20 | 19 | oveq1d 5982 |
. . . 4
|
| 21 | 15, 20 | eqtr3d 2242 |
. . 3
|
| 22 | 10, 2, 12, 5 | lmodvscl 14182 |
. . . . 5
|
| 23 | 1, 8, 9, 22 | syl3anc 1250 |
. . . 4
|
| 24 | lmod0vs.z |
. . . . 5
| |
| 25 | 10, 11, 24 | lmod0vid 14197 |
. . . 4
|
| 26 | 23, 25 | syldan 282 |
. . 3
|
| 27 | 21, 26 | mpbid 147 |
. 2
|
| 28 | 27 | eqcomd 2213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-sca 13040 df-vsca 13041 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-ring 13875 df-lmod 14166 |
| This theorem is referenced by: lmodvs0 14199 lmodvsmmulgdi 14200 lmodvneg1 14207 |
| Copyright terms: Public domain | W3C validator |