| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmod0vs | Unicode version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v |
|
| lmod0vs.f |
|
| lmod0vs.s |
|
| lmod0vs.o |
|
| lmod0vs.z |
|
| Ref | Expression |
|---|---|
| lmod0vs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | lmod0vs.f |
. . . . . . . 8
| |
| 3 | 2 | lmodring 14028 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eqid 2204 |
. . . . . . 7
| |
| 6 | lmod0vs.o |
. . . . . . 7
| |
| 7 | 5, 6 | ring0cl 13754 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | lmod0vs.v |
. . . . . 6
| |
| 11 | eqid 2204 |
. . . . . 6
| |
| 12 | lmod0vs.s |
. . . . . 6
| |
| 13 | eqid 2204 |
. . . . . 6
| |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 14045 |
. . . . 5
|
| 15 | 1, 8, 8, 9, 14 | syl13anc 1251 |
. . . 4
|
| 16 | ringgrp 13734 |
. . . . . . 7
| |
| 17 | 4, 16 | syl 14 |
. . . . . 6
|
| 18 | 5, 13, 6 | grplid 13334 |
. . . . . 6
|
| 19 | 17, 8, 18 | syl2anc 411 |
. . . . 5
|
| 20 | 19 | oveq1d 5958 |
. . . 4
|
| 21 | 15, 20 | eqtr3d 2239 |
. . 3
|
| 22 | 10, 2, 12, 5 | lmodvscl 14038 |
. . . . 5
|
| 23 | 1, 8, 9, 22 | syl3anc 1249 |
. . . 4
|
| 24 | lmod0vs.z |
. . . . 5
| |
| 25 | 10, 11, 24 | lmod0vid 14053 |
. . . 4
|
| 26 | 23, 25 | syldan 282 |
. . 3
|
| 27 | 21, 26 | mpbid 147 |
. 2
|
| 28 | 27 | eqcomd 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-mulr 12894 df-sca 12896 df-vsca 12897 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-ring 13731 df-lmod 14022 |
| This theorem is referenced by: lmodvs0 14055 lmodvsmmulgdi 14056 lmodvneg1 14063 |
| Copyright terms: Public domain | W3C validator |