| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmod0vs | Unicode version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v |
|
| lmod0vs.f |
|
| lmod0vs.s |
|
| lmod0vs.o |
|
| lmod0vs.z |
|
| Ref | Expression |
|---|---|
| lmod0vs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | lmod0vs.f |
. . . . . . . 8
| |
| 3 | 2 | lmodring 13851 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eqid 2196 |
. . . . . . 7
| |
| 6 | lmod0vs.o |
. . . . . . 7
| |
| 7 | 5, 6 | ring0cl 13577 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | lmod0vs.v |
. . . . . 6
| |
| 11 | eqid 2196 |
. . . . . 6
| |
| 12 | lmod0vs.s |
. . . . . 6
| |
| 13 | eqid 2196 |
. . . . . 6
| |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 13868 |
. . . . 5
|
| 15 | 1, 8, 8, 9, 14 | syl13anc 1251 |
. . . 4
|
| 16 | ringgrp 13557 |
. . . . . . 7
| |
| 17 | 4, 16 | syl 14 |
. . . . . 6
|
| 18 | 5, 13, 6 | grplid 13163 |
. . . . . 6
|
| 19 | 17, 8, 18 | syl2anc 411 |
. . . . 5
|
| 20 | 19 | oveq1d 5937 |
. . . 4
|
| 21 | 15, 20 | eqtr3d 2231 |
. . 3
|
| 22 | 10, 2, 12, 5 | lmodvscl 13861 |
. . . . 5
|
| 23 | 1, 8, 9, 22 | syl3anc 1249 |
. . . 4
|
| 24 | lmod0vs.z |
. . . . 5
| |
| 25 | 10, 11, 24 | lmod0vid 13876 |
. . . 4
|
| 26 | 23, 25 | syldan 282 |
. . 3
|
| 27 | 21, 26 | mpbid 147 |
. 2
|
| 28 | 27 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-ring 13554 df-lmod 13845 |
| This theorem is referenced by: lmodvs0 13878 lmodvsmmulgdi 13879 lmodvneg1 13886 |
| Copyright terms: Public domain | W3C validator |