ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmod0vs Unicode version

Theorem lmod0vs 13411
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v  |-  V  =  ( Base `  W
)
lmod0vs.f  |-  F  =  (Scalar `  W )
lmod0vs.s  |-  .x.  =  ( .s `  W )
lmod0vs.o  |-  O  =  ( 0g `  F
)
lmod0vs.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmod0vs  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmod0vs.f . . . . . . . 8  |-  F  =  (Scalar `  W )
32lmodring 13385 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
43adantr 276 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Ring )
5 eqid 2177 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmod0vs.o . . . . . . 7  |-  O  =  ( 0g `  F
)
75, 6ring0cl 13204 . . . . . 6  |-  ( F  e.  Ring  ->  O  e.  ( Base `  F
) )
84, 7syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  O  e.  ( Base `  F
) )
9 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
10 lmod0vs.v . . . . . 6  |-  V  =  ( Base `  W
)
11 eqid 2177 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
12 lmod0vs.s . . . . . 6  |-  .x.  =  ( .s `  W )
13 eqid 2177 . . . . . 6  |-  ( +g  `  F )  =  ( +g  `  F )
1410, 11, 2, 12, 5, 13lmodvsdir 13402 . . . . 5  |-  ( ( W  e.  LMod  /\  ( O  e.  ( Base `  F )  /\  O  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( O ( +g  `  F ) O )  .x.  X
)  =  ( ( O  .x.  X ) ( +g  `  W
) ( O  .x.  X ) ) )
151, 8, 8, 9, 14syl13anc 1240 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) ) )
16 ringgrp 13184 . . . . . . 7  |-  ( F  e.  Ring  ->  F  e. 
Grp )
174, 16syl 14 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
185, 13, 6grplid 12906 . . . . . 6  |-  ( ( F  e.  Grp  /\  O  e.  ( Base `  F ) )  -> 
( O ( +g  `  F ) O )  =  O )
1917, 8, 18syl2anc 411 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O ( +g  `  F
) O )  =  O )
2019oveq1d 5890 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( O  .x.  X
) )
2115, 20eqtr3d 2212 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O  .x.  X
) ( +g  `  W
) ( O  .x.  X ) )  =  ( O  .x.  X
) )
2210, 2, 12, 5lmodvscl 13395 . . . . 5  |-  ( ( W  e.  LMod  /\  O  e.  ( Base `  F
)  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
231, 8, 9, 22syl3anc 1238 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
24 lmod0vs.z . . . . 5  |-  .0.  =  ( 0g `  W )
2510, 11, 24lmod0vid 13410 . . . 4  |-  ( ( W  e.  LMod  /\  ( O  .x.  X )  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2623, 25syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2721, 26mpbid 147 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .0.  =  ( O  .x.  X ) )
2827eqcomd 2183 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536  Scalarcsca 12539   .scvsca 12540   0gc0g 12705   Grpcgrp 12877   Ringcrg 13179   LModclmod 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-ring 13181  df-lmod 13379
This theorem is referenced by:  lmodvs0  13412  lmodvsmmulgdi  13413  lmodvneg1  13420
  Copyright terms: Public domain W3C validator