ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmod0vs Unicode version

Theorem lmod0vs 14054
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v  |-  V  =  ( Base `  W
)
lmod0vs.f  |-  F  =  (Scalar `  W )
lmod0vs.s  |-  .x.  =  ( .s `  W )
lmod0vs.o  |-  O  =  ( 0g `  F
)
lmod0vs.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmod0vs  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmod0vs.f . . . . . . . 8  |-  F  =  (Scalar `  W )
32lmodring 14028 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
43adantr 276 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Ring )
5 eqid 2204 . . . . . . 7  |-  ( Base `  F )  =  (
Base `  F )
6 lmod0vs.o . . . . . . 7  |-  O  =  ( 0g `  F
)
75, 6ring0cl 13754 . . . . . 6  |-  ( F  e.  Ring  ->  O  e.  ( Base `  F
) )
84, 7syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  O  e.  ( Base `  F
) )
9 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
10 lmod0vs.v . . . . . 6  |-  V  =  ( Base `  W
)
11 eqid 2204 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
12 lmod0vs.s . . . . . 6  |-  .x.  =  ( .s `  W )
13 eqid 2204 . . . . . 6  |-  ( +g  `  F )  =  ( +g  `  F )
1410, 11, 2, 12, 5, 13lmodvsdir 14045 . . . . 5  |-  ( ( W  e.  LMod  /\  ( O  e.  ( Base `  F )  /\  O  e.  ( Base `  F
)  /\  X  e.  V ) )  -> 
( ( O ( +g  `  F ) O )  .x.  X
)  =  ( ( O  .x.  X ) ( +g  `  W
) ( O  .x.  X ) ) )
151, 8, 8, 9, 14syl13anc 1251 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) ) )
16 ringgrp 13734 . . . . . . 7  |-  ( F  e.  Ring  ->  F  e. 
Grp )
174, 16syl 14 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  F  e.  Grp )
185, 13, 6grplid 13334 . . . . . 6  |-  ( ( F  e.  Grp  /\  O  e.  ( Base `  F ) )  -> 
( O ( +g  `  F ) O )  =  O )
1917, 8, 18syl2anc 411 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O ( +g  `  F
) O )  =  O )
2019oveq1d 5958 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O ( +g  `  F ) O ) 
.x.  X )  =  ( O  .x.  X
) )
2115, 20eqtr3d 2239 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( O  .x.  X
) ( +g  `  W
) ( O  .x.  X ) )  =  ( O  .x.  X
) )
2210, 2, 12, 5lmodvscl 14038 . . . . 5  |-  ( ( W  e.  LMod  /\  O  e.  ( Base `  F
)  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
231, 8, 9, 22syl3anc 1249 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  e.  V )
24 lmod0vs.z . . . . 5  |-  .0.  =  ( 0g `  W )
2510, 11, 24lmod0vid 14053 . . . 4  |-  ( ( W  e.  LMod  /\  ( O  .x.  X )  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2623, 25syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( O  .x.  X ) ( +g  `  W ) ( O 
.x.  X ) )  =  ( O  .x.  X )  <->  .0.  =  ( O  .x.  X ) ) )
2721, 26mpbid 147 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .0.  =  ( O  .x.  X ) )
2827eqcomd 2210 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( O  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880  Scalarcsca 12883   .scvsca 12884   0gc0g 13059   Grpcgrp 13303   Ringcrg 13729   LModclmod 14020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-sca 12896  df-vsca 12897  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-ring 13731  df-lmod 14022
This theorem is referenced by:  lmodvs0  14055  lmodvsmmulgdi  14056  lmodvneg1  14063
  Copyright terms: Public domain W3C validator