| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmod0vs | Unicode version | ||
| Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmod0vs.v |
|
| lmod0vs.f |
|
| lmod0vs.s |
|
| lmod0vs.o |
|
| lmod0vs.z |
|
| Ref | Expression |
|---|---|
| lmod0vs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | lmod0vs.f |
. . . . . . . 8
| |
| 3 | 2 | lmodring 14057 |
. . . . . . 7
|
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | eqid 2205 |
. . . . . . 7
| |
| 6 | lmod0vs.o |
. . . . . . 7
| |
| 7 | 5, 6 | ring0cl 13783 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | lmod0vs.v |
. . . . . 6
| |
| 11 | eqid 2205 |
. . . . . 6
| |
| 12 | lmod0vs.s |
. . . . . 6
| |
| 13 | eqid 2205 |
. . . . . 6
| |
| 14 | 10, 11, 2, 12, 5, 13 | lmodvsdir 14074 |
. . . . 5
|
| 15 | 1, 8, 8, 9, 14 | syl13anc 1252 |
. . . 4
|
| 16 | ringgrp 13763 |
. . . . . . 7
| |
| 17 | 4, 16 | syl 14 |
. . . . . 6
|
| 18 | 5, 13, 6 | grplid 13363 |
. . . . . 6
|
| 19 | 17, 8, 18 | syl2anc 411 |
. . . . 5
|
| 20 | 19 | oveq1d 5959 |
. . . 4
|
| 21 | 15, 20 | eqtr3d 2240 |
. . 3
|
| 22 | 10, 2, 12, 5 | lmodvscl 14067 |
. . . . 5
|
| 23 | 1, 8, 9, 22 | syl3anc 1250 |
. . . 4
|
| 24 | lmod0vs.z |
. . . . 5
| |
| 25 | 10, 11, 24 | lmod0vid 14082 |
. . . 4
|
| 26 | 23, 25 | syldan 282 |
. . 3
|
| 27 | 21, 26 | mpbid 147 |
. 2
|
| 28 | 27 | eqcomd 2211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-ring 13760 df-lmod 14051 |
| This theorem is referenced by: lmodvs0 14084 lmodvsmmulgdi 14085 lmodvneg1 14092 |
| Copyright terms: Public domain | W3C validator |