ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval Unicode version

Theorem mapval 6622
Description: The value of set exponentiation (inference version). 
( A  ^m  B
) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
mapval.1  |-  A  e. 
_V
mapval.2  |-  B  e. 
_V
Assertion
Ref Expression
mapval  |-  ( A  ^m  B )  =  { f  |  f : B --> A }
Distinct variable groups:    A, f    B, f

Proof of Theorem mapval
StepHypRef Expression
1 mapval.1 . 2  |-  A  e. 
_V
2 mapval.2 . 2  |-  B  e. 
_V
3 mapvalg 6620 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
41, 2, 3mp2an 423 1  |-  ( A  ^m  B )  =  { f  |  f : B --> A }
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2725   -->wf 5183  (class class class)co 5841    ^m cmap 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846  df-map 6612
This theorem is referenced by:  nninfex  7082
  Copyright terms: Public domain W3C validator