ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapval Unicode version

Theorem mapval 6433
Description: The value of set exponentiation (inference version). 
( A  ^m  B
) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
mapval.1  |-  A  e. 
_V
mapval.2  |-  B  e. 
_V
Assertion
Ref Expression
mapval  |-  ( A  ^m  B )  =  { f  |  f : B --> A }
Distinct variable groups:    A, f    B, f

Proof of Theorem mapval
StepHypRef Expression
1 mapval.1 . 2  |-  A  e. 
_V
2 mapval.2 . 2  |-  B  e. 
_V
3 mapvalg 6431 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  ^m  B
)  =  { f  |  f : B --> A } )
41, 2, 3mp2an 418 1  |-  ( A  ^m  B )  =  { f  |  f : B --> A }
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   {cab 2075   _Vcvv 2622   -->wf 5026  (class class class)co 5668    ^m cmap 6421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-map 6423
This theorem is referenced by:  nninfex  12204
  Copyright terms: Public domain W3C validator