| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapval | GIF version | ||
| Description: The value of set exponentiation (inference version). (𝐴 ↑𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapval.1 | ⊢ 𝐴 ∈ V |
| mapval.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mapval | ⊢ (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapval.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mapval.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | mapvalg 6752 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⟶wf 5272 (class class class)co 5951 ↑𝑚 cmap 6742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-map 6744 |
| This theorem is referenced by: exmidpw2en 7016 nninfex 7230 psrval 14472 |
| Copyright terms: Public domain | W3C validator |