ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmmulg Unicode version

Theorem mhmmulg 13120
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mhmmulg.b  |-  B  =  ( Base `  G
)
mhmmulg.s  |-  .x.  =  (.g
`  G )
mhmmulg.t  |-  .X.  =  (.g
`  H )
Assertion
Ref Expression
mhmmulg  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )

Proof of Theorem mhmmulg
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 5920 . . . . . 6  |-  ( n  =  0  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
0  .x.  X )
) )
2 oveq1 5904 . . . . . 6  |-  ( n  =  0  ->  (
n  .X.  ( F `  X ) )  =  ( 0  .X.  ( F `  X )
) )
31, 2eqeq12d 2204 . . . . 5  |-  ( n  =  0  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) )
43imbi2d 230 . . . 4  |-  ( n  =  0  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( 0  .x.  X
) )  =  ( 0  .X.  ( F `  X ) ) ) ) )
5 fvoveq1 5920 . . . . . 6  |-  ( n  =  m  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
m  .x.  X )
) )
6 oveq1 5904 . . . . . 6  |-  ( n  =  m  ->  (
n  .X.  ( F `  X ) )  =  ( m  .X.  ( F `  X )
) )
75, 6eqeq12d 2204 . . . . 5  |-  ( n  =  m  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) )
87imbi2d 230 . . . 4  |-  ( n  =  m  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( m  .x.  X
) )  =  ( m  .X.  ( F `  X ) ) ) ) )
9 fvoveq1 5920 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( F `  ( n  .x.  X ) )  =  ( F `  (
( m  +  1 )  .x.  X ) ) )
10 oveq1 5904 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
n  .X.  ( F `  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
) )
119, 10eqeq12d 2204 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
1211imbi2d 230 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
13 fvoveq1 5920 . . . . . 6  |-  ( n  =  N  ->  ( F `  ( n  .x.  X ) )  =  ( F `  ( N  .x.  X ) ) )
14 oveq1 5904 . . . . . 6  |-  ( n  =  N  ->  (
n  .X.  ( F `  X ) )  =  ( N  .X.  ( F `  X )
) )
1513, 14eqeq12d 2204 . . . . 5  |-  ( n  =  N  ->  (
( F `  (
n  .x.  X )
)  =  ( n 
.X.  ( F `  X ) )  <->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) )
1615imbi2d 230 . . . 4  |-  ( n  =  N  ->  (
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( n  .x.  X
) )  =  ( n  .X.  ( F `  X ) ) )  <-> 
( ( F  e.  ( G MndHom  H )  /\  X  e.  B
)  ->  ( F `  ( N  .x.  X
) )  =  ( N  .X.  ( F `  X ) ) ) ) )
17 eqid 2189 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
18 eqid 2189 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
1917, 18mhm0 12935 . . . . . 6  |-  ( F  e.  ( G MndHom  H
)  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
2019adantr 276 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H
) )
21 mhmmulg.b . . . . . . . 8  |-  B  =  ( Base `  G
)
22 mhmmulg.s . . . . . . . 8  |-  .x.  =  (.g
`  G )
2321, 17, 22mulg0 13082 . . . . . . 7  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2423adantl 277 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2524fveq2d 5538 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( F `  ( 0g `  G ) ) )
26 eqid 2189 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
2721, 26mhmf 12932 . . . . . . 7  |-  ( F  e.  ( G MndHom  H
)  ->  F : B
--> ( Base `  H
) )
2827ffvelcdmda 5672 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  H
) )
29 mhmmulg.t . . . . . . 7  |-  .X.  =  (.g
`  H )
3026, 18, 29mulg0 13082 . . . . . 6  |-  ( ( F `  X )  e.  ( Base `  H
)  ->  ( 0 
.X.  ( F `  X ) )  =  ( 0g `  H
) )
3128, 30syl 14 . . . . 5  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
0  .X.  ( F `  X ) )  =  ( 0g `  H
) )
3220, 25, 313eqtr4d 2232 . . . 4  |-  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( 0  .x.  X ) )  =  ( 0  .X.  ( F `  X )
) )
33 oveq1 5904 . . . . . . 7  |-  ( ( F `  ( m 
.x.  X ) )  =  ( m  .X.  ( F `  X ) )  ->  ( ( F `  ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) )
34 mhmrcl1 12930 . . . . . . . . . . . 12  |-  ( F  e.  ( G MndHom  H
)  ->  G  e.  Mnd )
3534ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  G  e.  Mnd )
36 simpr 110 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  m  e.  NN0 )
37 simplr 528 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  X  e.  B
)
38 eqid 2189 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
3921, 22, 38mulgnn0p1 13090 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
( m  +  1 )  .x.  X )  =  ( ( m 
.x.  X ) ( +g  `  G ) X ) )
4035, 36, 37, 39syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .x.  X )  =  ( ( m  .x.  X
) ( +g  `  G
) X ) )
4140fveq2d 5538 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( F `  ( ( m  .x.  X ) ( +g  `  G
) X ) ) )
42 simpll 527 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  F  e.  ( G MndHom  H ) )
4334ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  G  e.  Mnd )
44 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  m  e.  NN0 )
45 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  X  e.  B )
4621, 22mulgnn0cl 13095 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  m  e.  NN0  /\  X  e.  B )  ->  (
m  .x.  X )  e.  B )
4743, 44, 45, 46syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G MndHom  H )  /\  m  e.  NN0 )  /\  X  e.  B )  ->  ( m  .x.  X
)  e.  B )
4847an32s 568 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( m  .x.  X )  e.  B
)
49 eqid 2189 . . . . . . . . . . 11  |-  ( +g  `  H )  =  ( +g  `  H )
5021, 38, 49mhmlin 12934 . . . . . . . . . 10  |-  ( ( F  e.  ( G MndHom  H )  /\  (
m  .x.  X )  e.  B  /\  X  e.  B )  ->  ( F `  ( (
m  .x.  X )
( +g  `  G ) X ) )  =  ( ( F `  ( m  .x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5142, 48, 37, 50syl3anc 1249 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  .x.  X ) ( +g  `  G ) X ) )  =  ( ( F `  ( m 
.x.  X ) ) ( +g  `  H
) ( F `  X ) ) )
5241, 51eqtrd 2222 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( F `  (
m  .x.  X )
) ( +g  `  H
) ( F `  X ) ) )
53 mhmrcl2 12931 . . . . . . . . . 10  |-  ( F  e.  ( G MndHom  H
)  ->  H  e.  Mnd )
5453ad2antrr 488 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  H  e.  Mnd )
5528adantr 276 . . . . . . . . 9  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( F `  X )  e.  (
Base `  H )
)
5626, 29, 49mulgnn0p1 13090 . . . . . . . . 9  |-  ( ( H  e.  Mnd  /\  m  e.  NN0  /\  ( F `  X )  e.  ( Base `  H
) )  ->  (
( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H
) ( F `  X ) ) )
5754, 36, 55, 56syl3anc 1249 . . . . . . . 8  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( m  +  1 )  .X.  ( F `  X ) )  =  ( ( m  .X.  ( F `  X ) ) ( +g  `  H ) ( F `  X
) ) )
5852, 57eqeq12d 2204 . . . . . . 7  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( ( m  +  1 )  .x.  X ) )  =  ( ( m  + 
1 )  .X.  ( F `  X )
)  <->  ( ( F `
 ( m  .x.  X ) ) ( +g  `  H ) ( F `  X
) )  =  ( ( m  .X.  ( F `  X )
) ( +g  `  H
) ( F `  X ) ) ) )
5933, 58imbitrrid 156 . . . . . 6  |-  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  /\  m  e.  NN0 )  ->  ( ( F `
 ( m  .x.  X ) )  =  ( m  .X.  ( F `  X )
)  ->  ( F `  ( ( m  + 
1 )  .x.  X
) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) )
6059expcom 116 . . . . 5  |-  ( m  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  (
( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) )  -> 
( F `  (
( m  +  1 )  .x.  X ) )  =  ( ( m  +  1 ) 
.X.  ( F `  X ) ) ) ) )
6160a2d 26 . . . 4  |-  ( m  e.  NN0  ->  ( ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  (
m  .x.  X )
)  =  ( m 
.X.  ( F `  X ) ) )  ->  ( ( F  e.  ( G MndHom  H
)  /\  X  e.  B )  ->  ( F `  ( (
m  +  1 ) 
.x.  X ) )  =  ( ( m  +  1 )  .X.  ( F `  X ) ) ) ) )
624, 8, 12, 16, 32, 61nn0ind 9398 . . 3  |-  ( N  e.  NN0  ->  ( ( F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) ) )
63623impib 1203 . 2  |-  ( ( N  e.  NN0  /\  F  e.  ( G MndHom  H )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
64633com12 1209 1  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845   NN0cn0 9207   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Mndcmnd 12892   MndHom cmhm 12924  .gcmg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-seqfrec 10479  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926  df-minusg 12964  df-mulg 13077
This theorem is referenced by:  ghmmulg  13212
  Copyright terms: Public domain W3C validator