ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmco Unicode version

Theorem mhmco 13065
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
mhmco  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )

Proof of Theorem mhmco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 13039 . . 3  |-  ( F  e.  ( T MndHom  U
)  ->  U  e.  Mnd )
2 mhmrcl1 13038 . . 3  |-  ( G  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
31, 2anim12ci 339 . 2  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( S  e.  Mnd  /\  U  e. 
Mnd ) )
4 eqid 2193 . . . . 5  |-  ( Base `  T )  =  (
Base `  T )
5 eqid 2193 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
64, 5mhmf 13040 . . . 4  |-  ( F  e.  ( T MndHom  U
)  ->  F :
( Base `  T ) --> ( Base `  U )
)
7 eqid 2193 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
87, 4mhmf 13040 . . . 4  |-  ( G  e.  ( S MndHom  T
)  ->  G :
( Base `  S ) --> ( Base `  T )
)
9 fco 5420 . . . 4  |-  ( ( F : ( Base `  T ) --> ( Base `  U )  /\  G : ( Base `  S
) --> ( Base `  T
) )  ->  ( F  o.  G ) : ( Base `  S
) --> ( Base `  U
) )
106, 8, 9syl2an 289 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G ) : (
Base `  S ) --> ( Base `  U )
)
11 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
12 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
137, 11, 12mhmlin 13042 . . . . . . . . 9  |-  ( ( G  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( G `  ( x ( +g  `  S ) y ) )  =  ( ( G `  x ) ( +g  `  T
) ( G `  y ) ) )
14133expb 1206 . . . . . . . 8  |-  ( ( G  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  (
x ( +g  `  S
) y ) )  =  ( ( G `
 x ) ( +g  `  T ) ( G `  y
) ) )
1514adantll 476 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  (
x ( +g  `  S
) y ) )  =  ( ( G `
 x ) ( +g  `  T ) ( G `  y
) ) )
1615fveq2d 5559 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  ( G `  ( x
( +g  `  S ) y ) ) )  =  ( F `  ( ( G `  x ) ( +g  `  T ) ( G `
 y ) ) ) )
17 simpll 527 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  F  e.  ( T MndHom  U ) )
188ad2antlr 489 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  G : ( Base `  S
) --> ( Base `  T
) )
19 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  ->  x  e.  ( Base `  S ) )
2018, 19ffvelcdmd 5695 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  x
)  e.  ( Base `  T ) )
21 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
y  e.  ( Base `  S ) )
2218, 21ffvelcdmd 5695 . . . . . . 7  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( G `  y
)  e.  ( Base `  T ) )
23 eqid 2193 . . . . . . . 8  |-  ( +g  `  U )  =  ( +g  `  U )
244, 12, 23mhmlin 13042 . . . . . . 7  |-  ( ( F  e.  ( T MndHom  U )  /\  ( G `  x )  e.  ( Base `  T
)  /\  ( G `  y )  e.  (
Base `  T )
)  ->  ( F `  ( ( G `  x ) ( +g  `  T ) ( G `
 y ) ) )  =  ( ( F `  ( G `
 x ) ) ( +g  `  U
) ( F `  ( G `  y ) ) ) )
2517, 20, 22, 24syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
( G `  x
) ( +g  `  T
) ( G `  y ) ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
2616, 25eqtrd 2226 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  ( G `  ( x
( +g  `  S ) y ) ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
272adantl 277 . . . . . . 7  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
287, 11mndcl 13007 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
29283expb 1206 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  ( x  e.  ( Base `  S )  /\  y  e.  ( Base `  S ) ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
3027, 29sylan 283 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( x ( +g  `  S ) y )  e.  ( Base `  S
) )
31 fvco3 5629 . . . . . 6  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  ( x
( +g  `  S ) y ) )  =  ( F `  ( G `  ( x
( +g  `  S ) y ) ) ) )
3218, 30, 31syl2anc 411 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  (
x ( +g  `  S
) y ) )  =  ( F `  ( G `  ( x ( +g  `  S
) y ) ) ) )
33 fvco3 5629 . . . . . . 7  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  x  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
3418, 19, 33syl2anc 411 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  x
)  =  ( F `
 ( G `  x ) ) )
35 fvco3 5629 . . . . . . 7  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  y  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  y )  =  ( F `  ( G `  y ) ) )
3618, 21, 35syl2anc 411 . . . . . 6  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  y
)  =  ( F `
 ( G `  y ) ) )
3734, 36oveq12d 5937 . . . . 5  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( ( F  o.  G ) `  x ) ( +g  `  U ) ( ( F  o.  G ) `
 y ) )  =  ( ( F `
 ( G `  x ) ) ( +g  `  U ) ( F `  ( G `  y )
) ) )
3826, 32, 373eqtr4d 2236 . . . 4  |-  ( ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( ( F  o.  G ) `  (
x ( +g  `  S
) y ) )  =  ( ( ( F  o.  G ) `
 x ) ( +g  `  U ) ( ( F  o.  G ) `  y
) ) )
3938ralrimivva 2576 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) ) )
408adantl 277 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  G :
( Base `  S ) --> ( Base `  T )
)
41 eqid 2193 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
427, 41mndidcl 13014 . . . . . 6  |-  ( S  e.  Mnd  ->  ( 0g `  S )  e.  ( Base `  S
) )
4327, 42syl 14 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( 0g `  S )  e.  (
Base `  S )
)
44 fvco3 5629 . . . . 5  |-  ( ( G : ( Base `  S ) --> ( Base `  T )  /\  ( 0g `  S )  e.  ( Base `  S
) )  ->  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( F `  ( G `  ( 0g `  S ) ) ) )
4540, 43, 44syl2anc 411 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) `  ( 0g `  S
) )  =  ( F `  ( G `
 ( 0g `  S ) ) ) )
46 eqid 2193 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
4741, 46mhm0 13043 . . . . . 6  |-  ( G  e.  ( S MndHom  T
)  ->  ( G `  ( 0g `  S
) )  =  ( 0g `  T ) )
4847adantl 277 . . . . 5  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( G `  ( 0g `  S
) )  =  ( 0g `  T ) )
4948fveq2d 5559 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F `  ( G `  ( 0g `  S ) ) )  =  ( F `
 ( 0g `  T ) ) )
50 eqid 2193 . . . . . 6  |-  ( 0g
`  U )  =  ( 0g `  U
)
5146, 50mhm0 13043 . . . . 5  |-  ( F  e.  ( T MndHom  U
)  ->  ( F `  ( 0g `  T
) )  =  ( 0g `  U ) )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  T
) )  =  ( 0g `  U ) )
5345, 49, 523eqtrd 2230 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) `  ( 0g `  S
) )  =  ( 0g `  U ) )
5410, 39, 533jca 1179 . 2  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( ( F  o.  G ) : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) )  /\  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( 0g `  U
) ) )
557, 5, 11, 23, 41, 50ismhm 13036 . 2  |-  ( ( F  o.  G )  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  (
( F  o.  G
) : ( Base `  S ) --> ( Base `  U )  /\  A. x  e.  ( Base `  S ) A. y  e.  ( Base `  S
) ( ( F  o.  G ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  o.  G
) `  x )
( +g  `  U ) ( ( F  o.  G ) `  y
) )  /\  (
( F  o.  G
) `  ( 0g `  S ) )  =  ( 0g `  U
) ) ) )
563, 54, 55sylanbrc 417 1  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000   MndHom cmhm 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034
This theorem is referenced by:  ghmco  13337  rhmco  13673  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator