ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmf Unicode version

Theorem mhmf 13498
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmf.b  |-  B  =  ( Base `  S
)
mhmf.c  |-  C  =  ( Base `  T
)
Assertion
Ref Expression
mhmf  |-  ( F  e.  ( S MndHom  T
)  ->  F : B
--> C )

Proof of Theorem mhmf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmf.b . . . 4  |-  B  =  ( Base `  S
)
2 mhmf.c . . . 4  |-  C  =  ( Base `  T
)
3 eqid 2229 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2229 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
5 eqid 2229 . . . 4  |-  ( 0g
`  S )  =  ( 0g `  S
)
6 eqid 2229 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
71, 2, 3, 4, 5, 6ismhm 13494 . . 3  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) ) )
87simprbi 275 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) )  /\  ( F `  ( 0g `  S ) )  =  ( 0g
`  T ) ) )
98simp1d 1033 1  |-  ( F  e.  ( S MndHom  T
)  ->  F : B
--> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449   MndHom cmhm 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-mhm 13492
This theorem is referenced by:  mhmf1o  13503  resmhm  13520  resmhm2  13521  resmhm2b  13522  mhmco  13523  mhmima  13524  mhmeql  13525  gsumwmhm  13531  mhmmulg  13700  ghmmhmb  13791  gsumfzmhm  13880  gsumfzmhm2  13881
  Copyright terms: Public domain W3C validator