| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 |
|
| mp3an13.2 |
|
| mp3an13.3 |
|
| Ref | Expression |
|---|---|
| mp3an13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 |
. 2
| |
| 2 | mp3an13.2 |
. . 3
| |
| 3 | mp3an13.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1360 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: residfi 7107 pitonnlem1p1 8033 mulrid 8143 addltmul 9348 eluzaddi 9749 fz01en 10249 fznatpl1 10272 expubnd 10818 bernneq 10882 bernneq2 10883 efi4p 12228 efival 12243 cos2tsin 12262 cos01bnd 12269 cos01gt0 12274 dvds0 12317 odd2np1 12384 opoe 12406 gcdid 12507 pythagtriplem4 12791 fvpr0o 13374 fvpr1o 13375 blssioo 15227 tgioo 15228 rerestcntop 15232 rerest 15234 sinperlem 15482 sincosq1sgn 15500 sincosq2sgn 15501 sinq12gt0 15504 cosq14gt0 15506 1sgmprm 15668 |
| Copyright terms: Public domain | W3C validator |