| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 |
|
| mp3an13.2 |
|
| mp3an13.3 |
|
| Ref | Expression |
|---|---|
| mp3an13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 |
. 2
| |
| 2 | mp3an13.2 |
. . 3
| |
| 3 | mp3an13.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1337 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: residfi 7015 pitonnlem1p1 7932 mulrid 8042 addltmul 9247 eluzaddi 9647 fz01en 10147 fznatpl1 10170 expubnd 10707 bernneq 10771 bernneq2 10772 efi4p 11901 efival 11916 cos2tsin 11935 cos01bnd 11942 cos01gt0 11947 dvds0 11990 odd2np1 12057 opoe 12079 gcdid 12180 pythagtriplem4 12464 fvpr0o 13045 fvpr1o 13046 blssioo 14897 tgioo 14898 rerestcntop 14902 rerest 14904 sinperlem 15152 sincosq1sgn 15170 sincosq2sgn 15171 sinq12gt0 15174 cosq14gt0 15176 1sgmprm 15338 |
| Copyright terms: Public domain | W3C validator |