| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) | 
| Ref | Expression | 
|---|---|
| mp3an13.1 | 
 | 
| mp3an13.2 | 
 | 
| mp3an13.3 | 
 | 
| Ref | Expression | 
|---|---|
| mp3an13 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an13.1 | 
. 2
 | |
| 2 | mp3an13.2 | 
. . 3
 | |
| 3 | mp3an13.3 | 
. . 3
 | |
| 4 | 2, 3 | mp3an3 1337 | 
. 2
 | 
| 5 | 1, 4 | mpan 424 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: residfi 7006 pitonnlem1p1 7913 mulrid 8023 addltmul 9228 eluzaddi 9628 fz01en 10128 fznatpl1 10151 expubnd 10688 bernneq 10752 bernneq2 10753 efi4p 11882 efival 11897 cos2tsin 11916 cos01bnd 11923 cos01gt0 11928 dvds0 11971 odd2np1 12038 opoe 12060 gcdid 12153 pythagtriplem4 12437 fvpr0o 12984 fvpr1o 12985 blssioo 14789 tgioo 14790 rerestcntop 14794 rerest 14796 sinperlem 15044 sincosq1sgn 15062 sincosq2sgn 15063 sinq12gt0 15066 cosq14gt0 15068 1sgmprm 15230 | 
| Copyright terms: Public domain | W3C validator |