| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 |
|
| mp3an13.2 |
|
| mp3an13.3 |
|
| Ref | Expression |
|---|---|
| mp3an13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 |
. 2
| |
| 2 | mp3an13.2 |
. . 3
| |
| 3 | mp3an13.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1337 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: residfi 7015 pitonnlem1p1 7930 mulrid 8040 addltmul 9245 eluzaddi 9645 fz01en 10145 fznatpl1 10168 expubnd 10705 bernneq 10769 bernneq2 10770 efi4p 11899 efival 11914 cos2tsin 11933 cos01bnd 11940 cos01gt0 11945 dvds0 11988 odd2np1 12055 opoe 12077 gcdid 12178 pythagtriplem4 12462 fvpr0o 13043 fvpr1o 13044 blssioo 14873 tgioo 14874 rerestcntop 14878 rerest 14880 sinperlem 15128 sincosq1sgn 15146 sincosq2sgn 15147 sinq12gt0 15150 cosq14gt0 15152 1sgmprm 15314 |
| Copyright terms: Public domain | W3C validator |