ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3an13 GIF version

Theorem mp3an13 1328
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
Hypotheses
Ref Expression
mp3an13.1 𝜑
mp3an13.2 𝜒
mp3an13.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mp3an13 (𝜓𝜃)

Proof of Theorem mp3an13
StepHypRef Expression
1 mp3an13.1 . 2 𝜑
2 mp3an13.2 . . 3 𝜒
3 mp3an13.3 . . 3 ((𝜑𝜓𝜒) → 𝜃)
42, 3mp3an3 1326 . 2 ((𝜑𝜓) → 𝜃)
51, 4mpan 424 1 (𝜓𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  pitonnlem1p1  7844  mulrid  7953  addltmul  9154  eluzaddi  9553  fz01en  10052  fznatpl1  10075  expubnd  10576  bernneq  10640  bernneq2  10641  efi4p  11724  efival  11739  cos2tsin  11758  cos01bnd  11765  cos01gt0  11769  dvds0  11812  odd2np1  11877  opoe  11899  gcdid  11986  pythagtriplem4  12267  fvpr0o  12759  fvpr1o  12760  blssioo  14015  tgioo  14016  rerestcntop  14020  sinperlem  14199  sincosq1sgn  14217  sincosq2sgn  14218  sinq12gt0  14221  cosq14gt0  14223
  Copyright terms: Public domain W3C validator