![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1326 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: pitonnlem1p1 7820 mulid1 7929 addltmul 9128 eluzaddi 9527 fz01en 10023 fznatpl1 10046 expubnd 10547 bernneq 10610 bernneq2 10611 efi4p 11693 efival 11708 cos2tsin 11727 cos01bnd 11734 cos01gt0 11738 dvds0 11781 odd2np1 11845 opoe 11867 gcdid 11954 pythagtriplem4 12235 blssioo 13625 tgioo 13626 rerestcntop 13630 sinperlem 13809 sincosq1sgn 13827 sincosq2sgn 13828 sinq12gt0 13831 cosq14gt0 13833 |
Copyright terms: Public domain | W3C validator |