| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1339 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: residfi 7068 pitonnlem1p1 7994 mulrid 8104 addltmul 9309 eluzaddi 9710 fz01en 10210 fznatpl1 10233 expubnd 10778 bernneq 10842 bernneq2 10843 efi4p 12143 efival 12158 cos2tsin 12177 cos01bnd 12184 cos01gt0 12189 dvds0 12232 odd2np1 12299 opoe 12321 gcdid 12422 pythagtriplem4 12706 fvpr0o 13288 fvpr1o 13289 blssioo 15140 tgioo 15141 rerestcntop 15145 rerest 15147 sinperlem 15395 sincosq1sgn 15413 sincosq2sgn 15414 sinq12gt0 15417 cosq14gt0 15419 1sgmprm 15581 |
| Copyright terms: Public domain | W3C validator |