![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1337 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 424 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: residfi 7001 pitonnlem1p1 7908 mulrid 8018 addltmul 9222 eluzaddi 9622 fz01en 10122 fznatpl1 10145 expubnd 10670 bernneq 10734 bernneq2 10735 efi4p 11863 efival 11878 cos2tsin 11897 cos01bnd 11904 cos01gt0 11909 dvds0 11952 odd2np1 12017 opoe 12039 gcdid 12126 pythagtriplem4 12409 fvpr0o 12927 fvpr1o 12928 blssioo 14732 tgioo 14733 rerestcntop 14737 rerest 14739 sinperlem 14984 sincosq1sgn 15002 sincosq2sgn 15003 sinq12gt0 15006 cosq14gt0 15008 |
Copyright terms: Public domain | W3C validator |