![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1285 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 418 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 943 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 945 |
This theorem is referenced by: pitonnlem1p1 7575 mulid1 7681 addltmul 8854 eluzaddi 9248 fz01en 9720 fznatpl1 9743 expubnd 10237 bernneq 10299 bernneq2 10300 efi4p 11269 efival 11284 cos2tsin 11303 cos01bnd 11310 cos01gt0 11314 dvds0 11350 odd2np1 11412 opoe 11434 gcdid 11516 blssioo 12525 tgioo 12526 rerestcntop 12530 |
Copyright terms: Public domain | W3C validator |