| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1339 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 424 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: residfi 7044 pitonnlem1p1 7961 mulrid 8071 addltmul 9276 eluzaddi 9677 fz01en 10177 fznatpl1 10200 expubnd 10743 bernneq 10807 bernneq2 10808 efi4p 12061 efival 12076 cos2tsin 12095 cos01bnd 12102 cos01gt0 12107 dvds0 12150 odd2np1 12217 opoe 12239 gcdid 12340 pythagtriplem4 12624 fvpr0o 13206 fvpr1o 13207 blssioo 15058 tgioo 15059 rerestcntop 15063 rerest 15065 sinperlem 15313 sincosq1sgn 15331 sincosq2sgn 15332 sinq12gt0 15335 cosq14gt0 15337 1sgmprm 15499 |
| Copyright terms: Public domain | W3C validator |