Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an13 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1321 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 422 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: pitonnlem1p1 7808 mulid1 7917 addltmul 9114 eluzaddi 9513 fz01en 10009 fznatpl1 10032 expubnd 10533 bernneq 10596 bernneq2 10597 efi4p 11680 efival 11695 cos2tsin 11714 cos01bnd 11721 cos01gt0 11725 dvds0 11768 odd2np1 11832 opoe 11854 gcdid 11941 pythagtriplem4 12222 blssioo 13339 tgioo 13340 rerestcntop 13344 sinperlem 13523 sincosq1sgn 13541 sincosq2sgn 13542 sinq12gt0 13545 cosq14gt0 13547 |
Copyright terms: Public domain | W3C validator |