ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp3an13 GIF version

Theorem mp3an13 1287
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.)
Hypotheses
Ref Expression
mp3an13.1 𝜑
mp3an13.2 𝜒
mp3an13.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mp3an13 (𝜓𝜃)

Proof of Theorem mp3an13
StepHypRef Expression
1 mp3an13.1 . 2 𝜑
2 mp3an13.2 . . 3 𝜒
3 mp3an13.3 . . 3 ((𝜑𝜓𝜒) → 𝜃)
42, 3mp3an3 1285 . 2 ((𝜑𝜓) → 𝜃)
51, 4mpan 418 1 (𝜓𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 945
This theorem is referenced by:  pitonnlem1p1  7575  mulid1  7681  addltmul  8854  eluzaddi  9248  fz01en  9720  fznatpl1  9743  expubnd  10237  bernneq  10299  bernneq2  10300  efi4p  11269  efival  11284  cos2tsin  11303  cos01bnd  11310  cos01gt0  11314  dvds0  11350  odd2np1  11412  opoe  11434  gcdid  11516  blssioo  12525  tgioo  12526  rerestcntop  12530
  Copyright terms: Public domain W3C validator