ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznatpl1 Unicode version

Theorem fznatpl1 10078
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
Assertion
Ref Expression
fznatpl1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )

Proof of Theorem fznatpl1
StepHypRef Expression
1 1red 7974 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  e.  RR )
2 elfzelz 10027 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  ZZ )
32zred 9377 . . . . 5  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  RR )
43adantl 277 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  e.  RR )
5 peano2re 8095 . . . 4  |-  ( I  e.  RR  ->  (
I  +  1 )  e.  RR )
64, 5syl 14 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  RR )
7 peano2re 8095 . . . . 5  |-  ( 1  e.  RR  ->  (
1  +  1 )  e.  RR )
81, 7syl 14 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  e.  RR )
91ltp1d 8889 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
1  +  1 ) )
10 elfzle1 10029 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  1  <_  I )
1110adantl 277 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  I
)
12 1re 7958 . . . . . . 7  |-  1  e.  RR
13 leadd1 8389 . . . . . . 7  |-  ( ( 1  e.  RR  /\  I  e.  RR  /\  1  e.  RR )  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
1412, 12, 13mp3an13 1328 . . . . . 6  |-  ( I  e.  RR  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
154, 14syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  <_  I 
<->  ( 1  +  1 )  <_  ( I  +  1 ) ) )
1611, 15mpbid 147 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  <_  (
I  +  1 ) )
171, 8, 6, 9, 16ltletrd 8382 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
I  +  1 ) )
181, 6, 17ltled 8078 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  (
I  +  1 ) )
19 elfzle2 10030 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  <_  ( N  -  1 ) )
2019adantl 277 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  <_  ( N  -  1 ) )
21 nnz 9274 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
2221adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  ZZ )
2322zred 9377 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  RR )
24 leaddsub 8397 . . . . 5  |-  ( ( I  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( I  +  1 )  <_  N  <->  I  <_  ( N  -  1 ) ) )
2512, 24mp3an2 1325 . . . 4  |-  ( ( I  e.  RR  /\  N  e.  RR )  ->  ( ( I  + 
1 )  <_  N  <->  I  <_  ( N  - 
1 ) ) )
264, 23, 25syl2anc 411 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  <_  N 
<->  I  <_  ( N  -  1 ) ) )
2720, 26mpbird 167 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  <_  N
)
282peano2zd 9380 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  (
I  +  1 )  e.  ZZ )
2928adantl 277 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ZZ )
30 1z 9281 . . . 4  |-  1  e.  ZZ
31 elfz 10016 . . . 4  |-  ( ( ( I  +  1 )  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  (
( I  +  1 )  e.  ( 1 ... N )  <->  ( 1  <_  ( I  + 
1 )  /\  (
I  +  1 )  <_  N ) ) )
3230, 31mp3an2 1325 . . 3  |-  ( ( ( I  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( I  + 
1 )  e.  ( 1 ... N )  <-> 
( 1  <_  (
I  +  1 )  /\  ( I  + 
1 )  <_  N
) ) )
3329, 22, 32syl2anc 411 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  e.  ( 1 ... N
)  <->  ( 1  <_ 
( I  +  1 )  /\  ( I  +  1 )  <_  N ) ) )
3418, 27, 33mpbir2and 944 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812   1c1 7814    + caddc 7816    <_ cle 7995    - cmin 8130   NNcn 8921   ZZcz 9255   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator