Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fznatpl1 | Unicode version |
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
Ref | Expression |
---|---|
fznatpl1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 7935 | . . 3 | |
2 | elfzelz 9981 | . . . . . 6 | |
3 | 2 | zred 9334 | . . . . 5 |
4 | 3 | adantl 275 | . . . 4 |
5 | peano2re 8055 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | peano2re 8055 | . . . . 5 | |
8 | 1, 7 | syl 14 | . . . 4 |
9 | 1 | ltp1d 8846 | . . . 4 |
10 | elfzle1 9983 | . . . . . 6 | |
11 | 10 | adantl 275 | . . . . 5 |
12 | 1re 7919 | . . . . . . 7 | |
13 | leadd1 8349 | . . . . . . 7 | |
14 | 12, 12, 13 | mp3an13 1323 | . . . . . 6 |
15 | 4, 14 | syl 14 | . . . . 5 |
16 | 11, 15 | mpbid 146 | . . . 4 |
17 | 1, 8, 6, 9, 16 | ltletrd 8342 | . . 3 |
18 | 1, 6, 17 | ltled 8038 | . 2 |
19 | elfzle2 9984 | . . . 4 | |
20 | 19 | adantl 275 | . . 3 |
21 | nnz 9231 | . . . . . 6 | |
22 | 21 | adantr 274 | . . . . 5 |
23 | 22 | zred 9334 | . . . 4 |
24 | leaddsub 8357 | . . . . 5 | |
25 | 12, 24 | mp3an2 1320 | . . . 4 |
26 | 4, 23, 25 | syl2anc 409 | . . 3 |
27 | 20, 26 | mpbird 166 | . 2 |
28 | 2 | peano2zd 9337 | . . . 4 |
29 | 28 | adantl 275 | . . 3 |
30 | 1z 9238 | . . . 4 | |
31 | elfz 9971 | . . . 4 | |
32 | 30, 31 | mp3an2 1320 | . . 3 |
33 | 29, 22, 32 | syl2anc 409 | . 2 |
34 | 18, 27, 33 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 cle 7955 cmin 8090 cn 8878 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |