ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fznatpl1 Unicode version

Theorem fznatpl1 9639
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
Assertion
Ref Expression
fznatpl1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )

Proof of Theorem fznatpl1
StepHypRef Expression
1 1red 7600 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  e.  RR )
2 elfzelz 9589 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  ZZ )
32zred 8967 . . . . 5  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  RR )
43adantl 272 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  e.  RR )
5 peano2re 7715 . . . 4  |-  ( I  e.  RR  ->  (
I  +  1 )  e.  RR )
64, 5syl 14 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  RR )
7 peano2re 7715 . . . . 5  |-  ( 1  e.  RR  ->  (
1  +  1 )  e.  RR )
81, 7syl 14 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  e.  RR )
91ltp1d 8488 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
1  +  1 ) )
10 elfzle1 9590 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  1  <_  I )
1110adantl 272 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  I
)
12 1re 7584 . . . . . . 7  |-  1  e.  RR
13 leadd1 8005 . . . . . . 7  |-  ( ( 1  e.  RR  /\  I  e.  RR  /\  1  e.  RR )  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
1412, 12, 13mp3an13 1271 . . . . . 6  |-  ( I  e.  RR  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
154, 14syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  <_  I 
<->  ( 1  +  1 )  <_  ( I  +  1 ) ) )
1611, 15mpbid 146 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  <_  (
I  +  1 ) )
171, 8, 6, 9, 16ltletrd 7998 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
I  +  1 ) )
181, 6, 17ltled 7699 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  (
I  +  1 ) )
19 elfzle2 9591 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  <_  ( N  -  1 ) )
2019adantl 272 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  <_  ( N  -  1 ) )
21 nnz 8867 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
2221adantr 271 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  ZZ )
2322zred 8967 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  RR )
24 leaddsub 8013 . . . . 5  |-  ( ( I  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( I  +  1 )  <_  N  <->  I  <_  ( N  -  1 ) ) )
2512, 24mp3an2 1268 . . . 4  |-  ( ( I  e.  RR  /\  N  e.  RR )  ->  ( ( I  + 
1 )  <_  N  <->  I  <_  ( N  - 
1 ) ) )
264, 23, 25syl2anc 404 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  <_  N 
<->  I  <_  ( N  -  1 ) ) )
2720, 26mpbird 166 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  <_  N
)
282peano2zd 8970 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  (
I  +  1 )  e.  ZZ )
2928adantl 272 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ZZ )
30 1z 8874 . . . 4  |-  1  e.  ZZ
31 elfz 9579 . . . 4  |-  ( ( ( I  +  1 )  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  (
( I  +  1 )  e.  ( 1 ... N )  <->  ( 1  <_  ( I  + 
1 )  /\  (
I  +  1 )  <_  N ) ) )
3230, 31mp3an2 1268 . . 3  |-  ( ( ( I  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( I  + 
1 )  e.  ( 1 ... N )  <-> 
( 1  <_  (
I  +  1 )  /\  ( I  + 
1 )  <_  N
) ) )
3329, 22, 32syl2anc 404 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  e.  ( 1 ... N
)  <->  ( 1  <_ 
( I  +  1 )  /\  ( I  +  1 )  <_  N ) ) )
3418, 27, 33mpbir2and 893 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1445   class class class wbr 3867  (class class class)co 5690   RRcr 7446   1c1 7448    + caddc 7450    <_ cle 7620    - cmin 7750   NNcn 8520   ZZcz 8848   ...cfz 9573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator