| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an23.1 |
|
| mp3an23.2 |
|
| mp3an23.3 |
|
| Ref | Expression |
|---|---|
| mp3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an23.1 |
. 2
| |
| 2 | mp3an23.2 |
. . 3
| |
| 3 | mp3an23.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1360 |
. 2
|
| 5 | 1, 4 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: sbciegf 3060 ac6sfi 7060 dju0en 7396 1qec 7575 ltaddnq 7594 halfnqq 7597 1idsr 7955 pn0sr 7958 ltm1sr 7964 muleqadd 8815 halfcl 9337 rehalfcl 9338 half0 9339 2halves 9340 halfpos2 9341 halfnneg2 9343 halfaddsub 9345 nneoor 9549 zeo 9552 fztp 10274 modqfrac 10559 iexpcyc 10866 bcn2 10986 bcpasc 10988 imre 11362 reim 11363 crim 11369 addcj 11402 imval2 11405 sinf 12215 efi4p 12228 resin4p 12229 recos4p 12230 sinneg 12237 efival 12243 cosadd 12248 sinmul 12255 sinbnd 12263 cosbnd 12264 ef01bndlem 12267 sin01bnd 12268 cos01bnd 12269 sin01gt0 12273 cos01gt0 12274 sin02gt0 12275 odd2np1lem 12383 odd2np1 12384 pythagtriplem12 12798 pockthi 12881 opprsubrngg 14175 opprdomnbg 14238 isridl 14468 zlmval 14591 zlmlemg 14592 zlmsca 14596 zlmvscag 14597 mopnex 15179 sub1cncf 15276 sub2cncf 15277 sincosq1lem 15499 sincosq2sgn 15501 sincosq3sgn 15502 sincosq4sgn 15503 sinq12gt0 15504 abssinper 15520 coskpi 15522 rpcxpsqrt 15596 logsqrt 15597 2lgsoddprmlem2 15785 |
| Copyright terms: Public domain | W3C validator |