| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an23.1 |
|
| mp3an23.2 |
|
| mp3an23.3 |
|
| Ref | Expression |
|---|---|
| mp3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an23.1 |
. 2
| |
| 2 | mp3an23.2 |
. . 3
| |
| 3 | mp3an23.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1337 |
. 2
|
| 5 | 1, 4 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: sbciegf 3021 ac6sfi 6968 dju0en 7297 1qec 7472 ltaddnq 7491 halfnqq 7494 1idsr 7852 pn0sr 7855 ltm1sr 7861 muleqadd 8712 halfcl 9234 rehalfcl 9235 half0 9236 2halves 9237 halfpos2 9238 halfnneg2 9240 halfaddsub 9242 nneoor 9445 zeo 9448 fztp 10170 modqfrac 10446 iexpcyc 10753 bcn2 10873 bcpasc 10875 imre 11033 reim 11034 crim 11040 addcj 11073 imval2 11076 sinf 11886 efi4p 11899 resin4p 11900 recos4p 11901 sinneg 11908 efival 11914 cosadd 11919 sinmul 11926 sinbnd 11934 cosbnd 11935 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 cos01gt0 11945 sin02gt0 11946 odd2np1lem 12054 odd2np1 12055 pythagtriplem12 12469 pockthi 12552 opprsubrngg 13843 opprdomnbg 13906 isridl 14136 zlmval 14259 zlmlemg 14260 zlmsca 14264 zlmvscag 14265 mopnex 14825 sub1cncf 14922 sub2cncf 14923 sincosq1lem 15145 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 sinq12gt0 15150 abssinper 15166 coskpi 15168 rpcxpsqrt 15242 logsqrt 15243 2lgsoddprmlem2 15431 |
| Copyright terms: Public domain | W3C validator |