Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an23 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an23.1 | |
mp3an23.2 | |
mp3an23.3 |
Ref | Expression |
---|---|
mp3an23 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an23.1 | . 2 | |
2 | mp3an23.2 | . . 3 | |
3 | mp3an23.3 | . . 3 | |
4 | 2, 3 | mp3an3 1316 | . 2 |
5 | 1, 4 | mpan2 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: sbciegf 2981 ac6sfi 6860 dju0en 7166 1qec 7325 ltaddnq 7344 halfnqq 7347 1idsr 7705 pn0sr 7708 ltm1sr 7714 muleqadd 8561 halfcl 9079 rehalfcl 9080 half0 9081 2halves 9082 halfpos2 9083 halfnneg2 9085 halfaddsub 9087 nneoor 9289 zeo 9292 fztp 10009 modqfrac 10268 iexpcyc 10555 bcn2 10673 bcpasc 10675 imre 10789 reim 10790 crim 10796 addcj 10829 imval2 10832 sinf 11641 efi4p 11654 resin4p 11655 recos4p 11656 sinneg 11663 efival 11669 cosadd 11674 sinmul 11681 sinbnd 11689 cosbnd 11690 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 sin01gt0 11698 cos01gt0 11699 sin02gt0 11700 odd2np1lem 11805 odd2np1 11806 pythagtriplem12 12203 pockthi 12284 mopnex 13105 sincosq1lem 13346 sincosq2sgn 13348 sincosq3sgn 13349 sincosq4sgn 13350 sinq12gt0 13351 abssinper 13367 coskpi 13369 rpcxpsqrt 13442 logsqrt 13443 |
Copyright terms: Public domain | W3C validator |