| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an23 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an23.1 |
|
| mp3an23.2 |
|
| mp3an23.3 |
|
| Ref | Expression |
|---|---|
| mp3an23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an23.1 |
. 2
| |
| 2 | mp3an23.2 |
. . 3
| |
| 3 | mp3an23.3 |
. . 3
| |
| 4 | 2, 3 | mp3an3 1339 |
. 2
|
| 5 | 1, 4 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: sbciegf 3037 ac6sfi 7021 dju0en 7357 1qec 7536 ltaddnq 7555 halfnqq 7558 1idsr 7916 pn0sr 7919 ltm1sr 7925 muleqadd 8776 halfcl 9298 rehalfcl 9299 half0 9300 2halves 9301 halfpos2 9302 halfnneg2 9304 halfaddsub 9306 nneoor 9510 zeo 9513 fztp 10235 modqfrac 10519 iexpcyc 10826 bcn2 10946 bcpasc 10948 imre 11277 reim 11278 crim 11284 addcj 11317 imval2 11320 sinf 12130 efi4p 12143 resin4p 12144 recos4p 12145 sinneg 12152 efival 12158 cosadd 12163 sinmul 12170 sinbnd 12178 cosbnd 12179 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 sin01gt0 12188 cos01gt0 12189 sin02gt0 12190 odd2np1lem 12298 odd2np1 12299 pythagtriplem12 12713 pockthi 12796 opprsubrngg 14088 opprdomnbg 14151 isridl 14381 zlmval 14504 zlmlemg 14505 zlmsca 14509 zlmvscag 14510 mopnex 15092 sub1cncf 15189 sub2cncf 15190 sincosq1lem 15412 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 sinq12gt0 15417 abssinper 15433 coskpi 15435 rpcxpsqrt 15509 logsqrt 15510 2lgsoddprmlem2 15698 |
| Copyright terms: Public domain | W3C validator |