Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an23 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an23.1 | |
mp3an23.2 | |
mp3an23.3 |
Ref | Expression |
---|---|
mp3an23 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an23.1 | . 2 | |
2 | mp3an23.2 | . . 3 | |
3 | mp3an23.3 | . . 3 | |
4 | 2, 3 | mp3an3 1326 | . 2 |
5 | 1, 4 | mpan2 425 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: sbciegf 2992 ac6sfi 6888 dju0en 7203 1qec 7362 ltaddnq 7381 halfnqq 7384 1idsr 7742 pn0sr 7745 ltm1sr 7751 muleqadd 8598 halfcl 9118 rehalfcl 9119 half0 9120 2halves 9121 halfpos2 9122 halfnneg2 9124 halfaddsub 9126 nneoor 9328 zeo 9331 fztp 10048 modqfrac 10307 iexpcyc 10594 bcn2 10712 bcpasc 10714 imre 10828 reim 10829 crim 10835 addcj 10868 imval2 10871 sinf 11680 efi4p 11693 resin4p 11694 recos4p 11695 sinneg 11702 efival 11708 cosadd 11713 sinmul 11720 sinbnd 11728 cosbnd 11729 ef01bndlem 11732 sin01bnd 11733 cos01bnd 11734 sin01gt0 11737 cos01gt0 11738 sin02gt0 11739 odd2np1lem 11844 odd2np1 11845 pythagtriplem12 12242 pockthi 12323 mopnex 13576 sincosq1lem 13817 sincosq2sgn 13819 sincosq3sgn 13820 sincosq4sgn 13821 sinq12gt0 13822 abssinper 13838 coskpi 13840 rpcxpsqrt 13913 logsqrt 13914 |
Copyright terms: Public domain | W3C validator |