ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq14gt0 Unicode version

Theorem cosq14gt0 15152
Description: The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 15112 . . . . 5  |-  ( pi 
/  2 )  e.  RR
2 elioore 10004 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  RR )
3 resubcl 8307 . . . . 5  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  / 
2 )  -  A
)  e.  RR )
41, 2, 3sylancr 414 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  RR )
5 neghalfpirx 15114 . . . . . . 7  |-  -u (
pi  /  2 )  e.  RR*
61rexri 8101 . . . . . . 7  |-  ( pi 
/  2 )  e. 
RR*
7 elioo2 10013 . . . . . . 7  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
85, 6, 7mp2an 426 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) )
98simp3bi 1016 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  <  ( pi  / 
2 ) )
10 posdif 8499 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  < 
( pi  /  2
)  <->  0  <  (
( pi  /  2
)  -  A ) ) )
112, 1, 10sylancl 413 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  (
pi  /  2 )  <->  0  <  ( ( pi  /  2 )  -  A ) ) )
129, 11mpbid 147 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( (
pi  /  2 )  -  A ) )
13 picn 15107 . . . . . . . 8  |-  pi  e.  CC
14 halfcl 9234 . . . . . . . 8  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
1513, 14ax-mp 5 . . . . . . 7  |-  ( pi 
/  2 )  e.  CC
1615negcli 8311 . . . . . . 7  |-  -u (
pi  /  2 )  e.  CC
1713, 15negsubi 8321 . . . . . . . 8  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
18 pidiv2halves 15115 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
1913, 15, 15, 18subaddrii 8332 . . . . . . . 8  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2017, 19eqtri 2217 . . . . . . 7  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2115, 13, 16, 20subaddrii 8332 . . . . . 6  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
228simp2bi 1015 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <  A )
2321, 22eqbrtrid 4069 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <  A )
24 pire 15106 . . . . . . 7  |-  pi  e.  RR
25 ltsub23 8486 . . . . . . 7  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR  /\  pi  e.  RR )  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
261, 24, 25mp3an13 1339 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
272, 26syl 14 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  A )  <  pi  <->  ( ( pi  /  2
)  -  pi )  <  A ) )
2823, 27mpbird 167 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  <  pi )
29 0xr 8090 . . . . 5  |-  0  e.  RR*
3024rexri 8101 . . . . 5  |-  pi  e.  RR*
31 elioo2 10013 . . . . 5  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) ) )
3229, 30, 31mp2an 426 . . . 4  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) )
334, 12, 28, 32syl3anbrc 1183 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi ) )
34 sinq12gt0 15150 . . 3  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( pi  /  2
)  -  A ) ) )
3533, 34syl 14 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  / 
2 )  -  A
) ) )
362recnd 8072 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  CC )
37 sinhalfpim 15141 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  A ) )  =  ( cos `  A
) )
3836, 37syl 14 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( sin `  (
( pi  /  2
)  -  A ) )  =  ( cos `  A ) )
3935, 38breqtrd 4060 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899   RR*cxr 8077    < clt 8078    - cmin 8214   -ucneg 8215    / cdiv 8716   2c2 9058   (,)cioo 9980   sincsin 11826   cosccos 11827   picpi 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-ioo 9984  df-ioc 9985  df-ico 9986  df-icc 9987  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833  df-pi 11835  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891  df-limced 14976  df-dvap 14977
This theorem is referenced by:  coseq0q4123  15154
  Copyright terms: Public domain W3C validator