ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzaddi Unicode version

Theorem eluzaddi 9366
Description: Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
Hypotheses
Ref Expression
eluzaddi.1  |-  M  e.  ZZ
eluzaddi.2  |-  K  e.  ZZ
Assertion
Ref Expression
eluzaddi  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )

Proof of Theorem eluzaddi
StepHypRef Expression
1 eluzelz 9349 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 eluzaddi.2 . . 3  |-  K  e.  ZZ
3 zaddcl 9108 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
41, 2, 3sylancl 409 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  K )  e.  ZZ )
5 eluzaddi.1 . . . 4  |-  M  e.  ZZ
65eluz1i 9347 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( N  e.  ZZ  /\  M  <_  N ) )
7 zre 9072 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR )
85zrei 9074 . . . . . 6  |-  M  e.  RR
92zrei 9074 . . . . . 6  |-  K  e.  RR
10 leadd1 8206 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  ( M  <_  N  <->  ( M  +  K )  <_  ( N  +  K )
) )
118, 9, 10mp3an13 1306 . . . . 5  |-  ( N  e.  RR  ->  ( M  <_  N  <->  ( M  +  K )  <_  ( N  +  K )
) )
127, 11syl 14 . . . 4  |-  ( N  e.  ZZ  ->  ( M  <_  N  <->  ( M  +  K )  <_  ( N  +  K )
) )
1312biimpa 294 . . 3  |-  ( ( N  e.  ZZ  /\  M  <_  N )  -> 
( M  +  K
)  <_  ( N  +  K ) )
146, 13sylbi 120 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  +  K )  <_  ( N  +  K )
)
15 zaddcl 9108 . . . 4  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
165, 2, 15mp2an 422 . . 3  |-  ( M  +  K )  e.  ZZ
1716eluz1i 9347 . 2  |-  ( ( N  +  K )  e.  ( ZZ>= `  ( M  +  K )
)  <->  ( ( N  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( N  +  K
) ) )
184, 14, 17sylanbrc 413 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  K )  e.  (
ZZ>= `  ( M  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RRcr 7633    + caddc 7637    <_ cle 7815   ZZcz 9068   ZZ>=cuz 9340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7725  ax-resscn 7726  ax-1cn 7727  ax-1re 7728  ax-icn 7729  ax-addcl 7730  ax-addrcl 7731  ax-mulcl 7732  ax-addcom 7734  ax-addass 7736  ax-distr 7738  ax-i2m1 7739  ax-0lt1 7740  ax-0id 7742  ax-rnegex 7743  ax-cnre 7745  ax-pre-ltirr 7746  ax-pre-ltwlin 7747  ax-pre-lttrn 7748  ax-pre-ltadd 7750
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7816  df-mnf 7817  df-xr 7818  df-ltxr 7819  df-le 7820  df-sub 7949  df-neg 7950  df-inn 8735  df-n0 8992  df-z 9069  df-uz 9341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator