ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnsubglem Unicode version

Theorem cnsubglem 14067
Description: Lemma for cnsubrglem 14068 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
cnsubglem.1  |-  ( x  e.  A  ->  x  e.  CC )
cnsubglem.2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
cnsubglem.3  |-  ( x  e.  A  ->  -u x  e.  A )
cnsubglem.4  |-  B  e.  A
Assertion
Ref Expression
cnsubglem  |-  A  e.  (SubGrp ` fld )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem cnsubglem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cnsubglem.1 . . 3  |-  ( x  e.  A  ->  x  e.  CC )
21ssriv 3183 . 2  |-  A  C_  CC
3 cnsubglem.4 . . 3  |-  B  e.  A
4 elex2 2776 . . 3  |-  ( B  e.  A  ->  E. w  w  e.  A )
53, 4ax-mp 5 . 2  |-  E. w  w  e.  A
6 cnsubglem.2 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )
76ralrimiva 2567 . . . 4  |-  ( x  e.  A  ->  A. y  e.  A  ( x  +  y )  e.  A )
8 cnfldneg 14061 . . . . . 6  |-  ( x  e.  CC  ->  (
( invg ` fld ) `  x )  =  -u x )
91, 8syl 14 . . . . 5  |-  ( x  e.  A  ->  (
( invg ` fld ) `  x )  =  -u x )
10 cnsubglem.3 . . . . 5  |-  ( x  e.  A  ->  -u x  e.  A )
119, 10eqeltrd 2270 . . . 4  |-  ( x  e.  A  ->  (
( invg ` fld ) `  x )  e.  A
)
127, 11jca 306 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( x  +  y
)  e.  A  /\  ( ( invg ` fld ) `  x )  e.  A ) )
1312rgen 2547 . 2  |-  A. x  e.  A  ( A. y  e.  A  (
x  +  y )  e.  A  /\  (
( invg ` fld ) `  x )  e.  A
)
14 cnring 14058 . . 3  |-fld  e.  Ring
15 ringgrp 13497 . . 3  |-  (fld  e.  Ring  ->fld  e.  Grp )
16 cnfldbas 14051 . . . 4  |-  CC  =  ( Base ` fld )
17 cnfldadd 14052 . . . 4  |-  +  =  ( +g  ` fld )
18 eqid 2193 . . . 4  |-  ( invg ` fld )  =  ( invg ` fld )
1916, 17, 18issubg2m 13259 . . 3  |-  (fld  e.  Grp  ->  ( A  e.  (SubGrp ` fld ) 
<->  ( A  C_  CC  /\ 
E. w  w  e.  A  /\  A. x  e.  A  ( A. y  e.  A  (
x  +  y )  e.  A  /\  (
( invg ` fld ) `  x )  e.  A
) ) ) )
2014, 15, 19mp2b 8 . 2  |-  ( A  e.  (SubGrp ` fld )  <->  ( A  C_  CC  /\  E. w  w  e.  A  /\  A. x  e.  A  ( A. y  e.  A  ( x  +  y
)  e.  A  /\  ( ( invg ` fld ) `  x )  e.  A ) ) )
212, 5, 13, 20mpbir3an 1181 1  |-  A  e.  (SubGrp ` fld )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3153   ` cfv 5254  (class class class)co 5918   CCcc 7870    + caddc 7875   -ucneg 8191   Grpcgrp 13072   invgcminusg 13073  SubGrpcsubg 13237   Ringcrg 13492  ℂfldccnfld 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-cmn 13356  df-mgp 13417  df-ring 13494  df-cring 13495  df-icnfld 14048
This theorem is referenced by:  cnsubrglem  14068  zringmulg  14086
  Copyright terms: Public domain W3C validator