ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elunit Unicode version

Theorem 0elunit 9943
Description: Zero is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
0elunit  |-  0  e.  ( 0 [,] 1
)

Proof of Theorem 0elunit
StepHypRef Expression
1 0re 7920 . 2  |-  0  e.  RR
2 0le0 8967 . 2  |-  0  <_  0
3 0le1 8400 . 2  |-  0  <_  1
4 1re 7919 . . 3  |-  1  e.  RR
51, 4elicc2i 9896 . 2  |-  ( 0  e.  ( 0 [,] 1 )  <->  ( 0  e.  RR  /\  0  <_  0  /\  0  <_ 
1 ) )
61, 2, 3, 5mpbir3an 1174 1  |-  0  e.  ( 0 [,] 1
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    <_ cle 7955   [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-0lt1 7880  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-icc 9852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator