ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restval Unicode version

Theorem restval 12747
Description: The subspace topology induced by the topology  J on the set  A. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restval  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
Distinct variable groups:    x, A    x, J
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem restval
Dummy variables  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2763 . 2  |-  ( J  e.  V  ->  J  e.  _V )
2 elex 2763 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 mptexg 5761 . . . . 5  |-  ( J  e.  _V  ->  (
x  e.  J  |->  ( x  i^i  A ) )  e.  _V )
4 rnexg 4910 . . . . 5  |-  ( ( x  e.  J  |->  ( x  i^i  A ) )  e.  _V  ->  ran  ( x  e.  J  |->  ( x  i^i  A
) )  e.  _V )
53, 4syl 14 . . . 4  |-  ( J  e.  _V  ->  ran  ( x  e.  J  |->  ( x  i^i  A
) )  e.  _V )
65adantr 276 . . 3  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ran  ( x  e.  J  |->  ( x  i^i 
A ) )  e. 
_V )
7 simpl 109 . . . . . 6  |-  ( ( j  =  J  /\  y  =  A )  ->  j  =  J )
8 simpr 110 . . . . . . 7  |-  ( ( j  =  J  /\  y  =  A )  ->  y  =  A )
98ineq2d 3351 . . . . . 6  |-  ( ( j  =  J  /\  y  =  A )  ->  ( x  i^i  y
)  =  ( x  i^i  A ) )
107, 9mpteq12dv 4100 . . . . 5  |-  ( ( j  =  J  /\  y  =  A )  ->  ( x  e.  j 
|->  ( x  i^i  y
) )  =  ( x  e.  J  |->  ( x  i^i  A ) ) )
1110rneqd 4874 . . . 4  |-  ( ( j  =  J  /\  y  =  A )  ->  ran  ( x  e.  j  |->  ( x  i^i  y ) )  =  ran  ( x  e.  J  |->  ( x  i^i 
A ) ) )
12 df-rest 12743 . . . 4  |-t  =  ( j  e.  _V ,  y  e. 
_V  |->  ran  ( x  e.  j  |->  ( x  i^i  y ) ) )
1311, 12ovmpoga 6025 . . 3  |-  ( ( J  e.  _V  /\  A  e.  _V  /\  ran  ( x  e.  J  |->  ( x  i^i  A
) )  e.  _V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
146, 13mpd3an3 1349 . 2  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
151, 2, 14syl2an 289 1  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143    |-> cmpt 4079   ran crn 4645  (class class class)co 5895   ↾t crest 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-rest 12743
This theorem is referenced by:  elrest  12748  restid2  12750  tgrest  14121  resttopon  14123  restco  14126  rest0  14131
  Copyright terms: Public domain W3C validator