Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftfuns | Unicode version |
Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | |
qlift.2 | |
qlift.3 | |
qlift.4 |
Ref | Expression |
---|---|
qliftfuns |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 | |
2 | nfcv 2308 | . . . . 5 | |
3 | nfcv 2308 | . . . . . 6 | |
4 | nfcsb1v 3078 | . . . . . 6 | |
5 | 3, 4 | nfop 3774 | . . . . 5 |
6 | eceq1 6536 | . . . . . 6 | |
7 | csbeq1a 3054 | . . . . . 6 | |
8 | 6, 7 | opeq12d 3766 | . . . . 5 |
9 | 2, 5, 8 | cbvmpt 4077 | . . . 4 |
10 | 9 | rneqi 4832 | . . 3 |
11 | 1, 10 | eqtri 2186 | . 2 |
12 | qlift.2 | . . . 4 | |
13 | 12 | ralrimiva 2539 | . . 3 |
14 | 4 | nfel1 2319 | . . . 4 |
15 | 7 | eleq1d 2235 | . . . 4 |
16 | 14, 15 | rspc 2824 | . . 3 |
17 | 13, 16 | mpan9 279 | . 2 |
18 | qlift.3 | . 2 | |
19 | qlift.4 | . 2 | |
20 | csbeq1 3048 | . 2 | |
21 | 11, 17, 18, 19, 20 | qliftfun 6583 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 cvv 2726 csb 3045 cop 3579 class class class wbr 3982 cmpt 4043 crn 4605 wfun 5182 wer 6498 cec 6499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |