ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfuns Unicode version

Theorem qliftfuns 6374
Description: The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftfuns  |-  ( ph  ->  ( Fun  F  <->  A. y A. z ( y R z  ->  [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
) ) )
Distinct variable groups:    y, z, A   
x, y, z, ph    x, R, y, z    y, F, z    x, X, y, z    x, Y, y, z
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftfuns
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 nfcv 2228 . . . . 5  |-  F/_ y <. [ x ] R ,  A >.
3 nfcv 2228 . . . . . 6  |-  F/_ x [ y ] R
4 nfcsb1v 2963 . . . . . 6  |-  F/_ x [_ y  /  x ]_ A
53, 4nfop 3638 . . . . 5  |-  F/_ x <. [ y ] R ,  [_ y  /  x ]_ A >.
6 eceq1 6325 . . . . . 6  |-  ( x  =  y  ->  [ x ] R  =  [
y ] R )
7 csbeq1a 2941 . . . . . 6  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
86, 7opeq12d 3630 . . . . 5  |-  ( x  =  y  ->  <. [ x ] R ,  A >.  = 
<. [ y ] R ,  [_ y  /  x ]_ A >. )
92, 5, 8cbvmpt 3933 . . . 4  |-  ( x  e.  X  |->  <. [ x ] R ,  A >. )  =  ( y  e.  X  |->  <. [ y ] R ,  [_ y  /  x ]_ A >. )
109rneqi 4663 . . 3  |-  ran  (
x  e.  X  |->  <. [ x ] R ,  A >. )  =  ran  ( y  e.  X  |-> 
<. [ y ] R ,  [_ y  /  x ]_ A >. )
111, 10eqtri 2108 . 2  |-  F  =  ran  ( y  e.  X  |->  <. [ y ] R ,  [_ y  /  x ]_ A >. )
12 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
1312ralrimiva 2446 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  Y )
144nfel1 2239 . . . 4  |-  F/ x [_ y  /  x ]_ A  e.  Y
157eleq1d 2156 . . . 4  |-  ( x  =  y  ->  ( A  e.  Y  <->  [_ y  /  x ]_ A  e.  Y
) )
1614, 15rspc 2716 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  A  e.  Y  ->  [_ y  /  x ]_ A  e.  Y )
)
1713, 16mpan9 275 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ A  e.  Y )
18 qlift.3 . 2  |-  ( ph  ->  R  Er  X )
19 qlift.4 . 2  |-  ( ph  ->  X  e.  _V )
20 csbeq1 2936 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
2111, 17, 18, 19, 20qliftfun 6372 1  |-  ( ph  ->  ( Fun  F  <->  A. y A. z ( y R z  ->  [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619   [_csb 2933   <.cop 3449   class class class wbr 3845    |-> cmpt 3899   ran crn 4439   Fun wfun 5009    Er wer 6287   [cec 6288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-er 6290  df-ec 6292  df-qs 6296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator