Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftfuns | Unicode version |
Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | |
qlift.2 | |
qlift.3 | |
qlift.4 |
Ref | Expression |
---|---|
qliftfuns |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 | |
2 | nfcv 2312 | . . . . 5 | |
3 | nfcv 2312 | . . . . . 6 | |
4 | nfcsb1v 3082 | . . . . . 6 | |
5 | 3, 4 | nfop 3781 | . . . . 5 |
6 | eceq1 6548 | . . . . . 6 | |
7 | csbeq1a 3058 | . . . . . 6 | |
8 | 6, 7 | opeq12d 3773 | . . . . 5 |
9 | 2, 5, 8 | cbvmpt 4084 | . . . 4 |
10 | 9 | rneqi 4839 | . . 3 |
11 | 1, 10 | eqtri 2191 | . 2 |
12 | qlift.2 | . . . 4 | |
13 | 12 | ralrimiva 2543 | . . 3 |
14 | 4 | nfel1 2323 | . . . 4 |
15 | 7 | eleq1d 2239 | . . . 4 |
16 | 14, 15 | rspc 2828 | . . 3 |
17 | 13, 16 | mpan9 279 | . 2 |
18 | qlift.3 | . 2 | |
19 | qlift.4 | . 2 | |
20 | csbeq1 3052 | . 2 | |
21 | 11, 17, 18, 19, 20 | qliftfun 6595 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 wral 2448 cvv 2730 csb 3049 cop 3586 class class class wbr 3989 cmpt 4050 crn 4612 wfun 5192 wer 6510 cec 6511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |