| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qliftfuns | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| qlift.1 |
|
| qlift.2 |
|
| qlift.3 |
|
| qlift.4 |
|
| Ref | Expression |
|---|---|
| qliftfuns |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 |
. . 3
| |
| 2 | nfcv 2372 |
. . . . 5
| |
| 3 | nfcv 2372 |
. . . . . 6
| |
| 4 | nfcsb1v 3157 |
. . . . . 6
| |
| 5 | 3, 4 | nfop 3872 |
. . . . 5
|
| 6 | eceq1 6713 |
. . . . . 6
| |
| 7 | csbeq1a 3133 |
. . . . . 6
| |
| 8 | 6, 7 | opeq12d 3864 |
. . . . 5
|
| 9 | 2, 5, 8 | cbvmpt 4178 |
. . . 4
|
| 10 | 9 | rneqi 4951 |
. . 3
|
| 11 | 1, 10 | eqtri 2250 |
. 2
|
| 12 | qlift.2 |
. . . 4
| |
| 13 | 12 | ralrimiva 2603 |
. . 3
|
| 14 | 4 | nfel1 2383 |
. . . 4
|
| 15 | 7 | eleq1d 2298 |
. . . 4
|
| 16 | 14, 15 | rspc 2901 |
. . 3
|
| 17 | 13, 16 | mpan9 281 |
. 2
|
| 18 | qlift.3 |
. 2
| |
| 19 | qlift.4 |
. 2
| |
| 20 | csbeq1 3127 |
. 2
| |
| 21 | 11, 17, 18, 19, 20 | qliftfun 6762 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-er 6678 df-ec 6680 df-qs 6684 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |