ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofc12 GIF version

Theorem ofc12 6070
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
ofc12.1 (𝜑𝐴𝑉)
ofc12.2 (𝜑𝐵𝑊)
ofc12.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofc12 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofc12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofc12.1 . . 3 (𝜑𝐴𝑉)
2 ofc12.2 . . . 4 (𝜑𝐵𝑊)
32adantr 274 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
4 ofc12.3 . . . 4 (𝜑𝐶𝑋)
54adantr 274 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑋)
6 fconstmpt 4651 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
76a1i 9 . . 3 (𝜑 → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
8 fconstmpt 4651 . . . 4 (𝐴 × {𝐶}) = (𝑥𝐴𝐶)
98a1i 9 . . 3 (𝜑 → (𝐴 × {𝐶}) = (𝑥𝐴𝐶))
101, 3, 5, 7, 9offval2 6065 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
11 fconstmpt 4651 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
1210, 11eqtr4di 2217 1 (𝜑 → ((𝐴 × {𝐵}) ∘𝑓 𝑅(𝐴 × {𝐶})) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {csn 3576  cmpt 4043   × cxp 4602  (class class class)co 5842  𝑓 cof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator