| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval2 | Unicode version | ||
| Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval2.1 |
|
| offval2.2 |
|
| offval2.3 |
|
| offval2.4 |
|
| offval2.5 |
|
| Ref | Expression |
|---|---|
| offval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.2 |
. . . . . 6
| |
| 2 | 1 | ralrimiva 2579 |
. . . . 5
|
| 3 | eqid 2205 |
. . . . . 6
| |
| 4 | 3 | fnmpt 5402 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | offval2.4 |
. . . . 5
| |
| 7 | 6 | fneq1d 5364 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | offval2.3 |
. . . . . 6
| |
| 10 | 9 | ralrimiva 2579 |
. . . . 5
|
| 11 | eqid 2205 |
. . . . . 6
| |
| 12 | 11 | fnmpt 5402 |
. . . . 5
|
| 13 | 10, 12 | syl 14 |
. . . 4
|
| 14 | offval2.5 |
. . . . 5
| |
| 15 | 14 | fneq1d 5364 |
. . . 4
|
| 16 | 13, 15 | mpbird 167 |
. . 3
|
| 17 | offval2.1 |
. . 3
| |
| 18 | inidm 3382 |
. . 3
| |
| 19 | 6 | adantr 276 |
. . . 4
|
| 20 | 19 | fveq1d 5578 |
. . 3
|
| 21 | 14 | adantr 276 |
. . . 4
|
| 22 | 21 | fveq1d 5578 |
. . 3
|
| 23 | 8, 16, 17, 17, 18, 20, 22 | offval 6166 |
. 2
|
| 24 | nffvmpt1 5587 |
. . . . 5
| |
| 25 | nfcv 2348 |
. . . . 5
| |
| 26 | nffvmpt1 5587 |
. . . . 5
| |
| 27 | 24, 25, 26 | nfov 5974 |
. . . 4
|
| 28 | nfcv 2348 |
. . . 4
| |
| 29 | fveq2 5576 |
. . . . 5
| |
| 30 | fveq2 5576 |
. . . . 5
| |
| 31 | 29, 30 | oveq12d 5962 |
. . . 4
|
| 32 | 27, 28, 31 | cbvmpt 4139 |
. . 3
|
| 33 | simpr 110 |
. . . . . 6
| |
| 34 | 3 | fvmpt2 5663 |
. . . . . 6
|
| 35 | 33, 1, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 11 | fvmpt2 5663 |
. . . . . 6
|
| 37 | 33, 9, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 35, 37 | oveq12d 5962 |
. . . 4
|
| 39 | 38 | mpteq2dva 4134 |
. . 3
|
| 40 | 32, 39 | eqtrid 2250 |
. 2
|
| 41 | 23, 40 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-of 6158 |
| This theorem is referenced by: ofc12 6182 caofinvl 6184 caofcom 6189 caofdig 6192 pwsplusgval 13127 pwsmulrval 13128 pwssub 13445 gsumfzmptfidmadd 13675 gsumfzmptfidmadd2 13676 psrlinv 14446 dvimulf 15178 dvexp 15183 dvmptaddx 15191 dvmptmulx 15192 dvef 15199 plyaddlem1 15219 plymullem1 15220 plycolemc 15230 lgseisenlem3 15549 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |