ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval2 Unicode version

Theorem offval2 6065
Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1  |-  ( ph  ->  A  e.  V )
offval2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
offval2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
offval2.4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
offval2.5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
Assertion
Ref Expression
offval2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, A    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)    V( x)    W( x)    X( x)

Proof of Theorem offval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  W )
21ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  W )
3 eqid 2165 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5314 . . . . 5  |-  ( A. x  e.  A  B  e.  W  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 offval2.4 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5278 . . . 4  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 166 . . 3  |-  ( ph  ->  F  Fn  A )
9 offval2.3 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  X )
109ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. x  e.  A  C  e.  X )
11 eqid 2165 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1211fnmpt 5314 . . . . 5  |-  ( A. x  e.  A  C  e.  X  ->  ( x  e.  A  |->  C )  Fn  A )
1310, 12syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  Fn  A
)
14 offval2.5 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )
1514fneq1d 5278 . . . 4  |-  ( ph  ->  ( G  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
1613, 15mpbird 166 . . 3  |-  ( ph  ->  G  Fn  A )
17 offval2.1 . . 3  |-  ( ph  ->  A  e.  V )
18 inidm 3331 . . 3  |-  ( A  i^i  A )  =  A
196adantr 274 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  F  =  ( x  e.  A  |->  B ) )
2019fveq1d 5488 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( ( x  e.  A  |->  B ) `
 y ) )
2114adantr 274 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  G  =  ( x  e.  A  |->  C ) )
2221fveq1d 5488 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( G `  y )  =  ( ( x  e.  A  |->  C ) `
 y ) )
238, 16, 17, 17, 18, 20, 22offval 6057 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) ) )
24 nffvmpt1 5497 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
25 nfcv 2308 . . . . 5  |-  F/_ x R
26 nffvmpt1 5497 . . . . 5  |-  F/_ x
( ( x  e.  A  |->  C ) `  y )
2724, 25, 26nfov 5872 . . . 4  |-  F/_ x
( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) )
28 nfcv 2308 . . . 4  |-  F/_ y
( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) )
29 fveq2 5486 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
30 fveq2 5486 . . . . 5  |-  ( y  =  x  ->  (
( x  e.  A  |->  C ) `  y
)  =  ( ( x  e.  A  |->  C ) `  x ) )
3129, 30oveq12d 5860 . . . 4  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y ) R ( ( x  e.  A  |->  C ) `  y
) )  =  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
3227, 28, 31cbvmpt 4077 . . 3  |-  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  y
) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) ) )
33 simpr 109 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
343fvmpt2 5569 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  W )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3533, 1, 34syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3611fvmpt2 5569 . . . . . 6  |-  ( ( x  e.  A  /\  C  e.  X )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
3733, 9, 36syl2anc 409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  C ) `  x
)  =  C )
3835, 37oveq12d 5860 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x ) R ( ( x  e.  A  |->  C ) `  x
) )  =  ( B R C ) )
3938mpteq2dva 4072 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 x ) R ( ( x  e.  A  |->  C ) `  x ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4032, 39syl5eq 2211 . 2  |-  ( ph  ->  ( y  e.  A  |->  ( ( ( x  e.  A  |->  B ) `
 y ) R ( ( x  e.  A  |->  C ) `  y ) ) )  =  ( x  e.  A  |->  ( B R C ) ) )
4123, 40eqtrd 2198 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    |-> cmpt 4043    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  ofc12  6070  caofinvl  6072  caofcom  6073  dvimulf  13320  dvexp  13325  dvmptaddx  13331  dvmptmulx  13332  dvef  13338
  Copyright terms: Public domain W3C validator