| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval2 | Unicode version | ||
| Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval2.1 |
|
| offval2.2 |
|
| offval2.3 |
|
| offval2.4 |
|
| offval2.5 |
|
| Ref | Expression |
|---|---|
| offval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.2 |
. . . . . 6
| |
| 2 | 1 | ralrimiva 2579 |
. . . . 5
|
| 3 | eqid 2205 |
. . . . . 6
| |
| 4 | 3 | fnmpt 5404 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | offval2.4 |
. . . . 5
| |
| 7 | 6 | fneq1d 5365 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | offval2.3 |
. . . . . 6
| |
| 10 | 9 | ralrimiva 2579 |
. . . . 5
|
| 11 | eqid 2205 |
. . . . . 6
| |
| 12 | 11 | fnmpt 5404 |
. . . . 5
|
| 13 | 10, 12 | syl 14 |
. . . 4
|
| 14 | offval2.5 |
. . . . 5
| |
| 15 | 14 | fneq1d 5365 |
. . . 4
|
| 16 | 13, 15 | mpbird 167 |
. . 3
|
| 17 | offval2.1 |
. . 3
| |
| 18 | inidm 3382 |
. . 3
| |
| 19 | 6 | adantr 276 |
. . . 4
|
| 20 | 19 | fveq1d 5580 |
. . 3
|
| 21 | 14 | adantr 276 |
. . . 4
|
| 22 | 21 | fveq1d 5580 |
. . 3
|
| 23 | 8, 16, 17, 17, 18, 20, 22 | offval 6168 |
. 2
|
| 24 | nffvmpt1 5589 |
. . . . 5
| |
| 25 | nfcv 2348 |
. . . . 5
| |
| 26 | nffvmpt1 5589 |
. . . . 5
| |
| 27 | 24, 25, 26 | nfov 5976 |
. . . 4
|
| 28 | nfcv 2348 |
. . . 4
| |
| 29 | fveq2 5578 |
. . . . 5
| |
| 30 | fveq2 5578 |
. . . . 5
| |
| 31 | 29, 30 | oveq12d 5964 |
. . . 4
|
| 32 | 27, 28, 31 | cbvmpt 4140 |
. . 3
|
| 33 | simpr 110 |
. . . . . 6
| |
| 34 | 3 | fvmpt2 5665 |
. . . . . 6
|
| 35 | 33, 1, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 11 | fvmpt2 5665 |
. . . . . 6
|
| 37 | 33, 9, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 35, 37 | oveq12d 5964 |
. . . 4
|
| 39 | 38 | mpteq2dva 4135 |
. . 3
|
| 40 | 32, 39 | eqtrid 2250 |
. 2
|
| 41 | 23, 40 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-of 6160 |
| This theorem is referenced by: ofc12 6184 caofinvl 6186 caofcom 6191 caofdig 6194 pwsplusgval 13160 pwsmulrval 13161 pwssub 13478 gsumfzmptfidmadd 13708 gsumfzmptfidmadd2 13709 psrlinv 14479 dvimulf 15211 dvexp 15216 dvmptaddx 15224 dvmptmulx 15225 dvef 15232 plyaddlem1 15252 plymullem1 15253 plycolemc 15263 lgseisenlem3 15582 lgseisenlem4 15583 |
| Copyright terms: Public domain | W3C validator |