| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval2 | Unicode version | ||
| Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval2.1 |
|
| offval2.2 |
|
| offval2.3 |
|
| offval2.4 |
|
| offval2.5 |
|
| Ref | Expression |
|---|---|
| offval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.2 |
. . . . . 6
| |
| 2 | 1 | ralrimiva 2570 |
. . . . 5
|
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | 3 | fnmpt 5387 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | offval2.4 |
. . . . 5
| |
| 7 | 6 | fneq1d 5349 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | offval2.3 |
. . . . . 6
| |
| 10 | 9 | ralrimiva 2570 |
. . . . 5
|
| 11 | eqid 2196 |
. . . . . 6
| |
| 12 | 11 | fnmpt 5387 |
. . . . 5
|
| 13 | 10, 12 | syl 14 |
. . . 4
|
| 14 | offval2.5 |
. . . . 5
| |
| 15 | 14 | fneq1d 5349 |
. . . 4
|
| 16 | 13, 15 | mpbird 167 |
. . 3
|
| 17 | offval2.1 |
. . 3
| |
| 18 | inidm 3373 |
. . 3
| |
| 19 | 6 | adantr 276 |
. . . 4
|
| 20 | 19 | fveq1d 5563 |
. . 3
|
| 21 | 14 | adantr 276 |
. . . 4
|
| 22 | 21 | fveq1d 5563 |
. . 3
|
| 23 | 8, 16, 17, 17, 18, 20, 22 | offval 6147 |
. 2
|
| 24 | nffvmpt1 5572 |
. . . . 5
| |
| 25 | nfcv 2339 |
. . . . 5
| |
| 26 | nffvmpt1 5572 |
. . . . 5
| |
| 27 | 24, 25, 26 | nfov 5955 |
. . . 4
|
| 28 | nfcv 2339 |
. . . 4
| |
| 29 | fveq2 5561 |
. . . . 5
| |
| 30 | fveq2 5561 |
. . . . 5
| |
| 31 | 29, 30 | oveq12d 5943 |
. . . 4
|
| 32 | 27, 28, 31 | cbvmpt 4129 |
. . 3
|
| 33 | simpr 110 |
. . . . . 6
| |
| 34 | 3 | fvmpt2 5648 |
. . . . . 6
|
| 35 | 33, 1, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 11 | fvmpt2 5648 |
. . . . . 6
|
| 37 | 33, 9, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 35, 37 | oveq12d 5943 |
. . . 4
|
| 39 | 38 | mpteq2dva 4124 |
. . 3
|
| 40 | 32, 39 | eqtrid 2241 |
. 2
|
| 41 | 23, 40 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 |
| This theorem is referenced by: ofc12 6163 caofinvl 6165 caofcom 6170 caofdig 6173 pwsplusgval 12997 pwsmulrval 12998 pwssub 13315 gsumfzmptfidmadd 13545 gsumfzmptfidmadd2 13546 psrlinv 14312 dvimulf 15026 dvexp 15031 dvmptaddx 15039 dvmptmulx 15040 dvef 15047 plyaddlem1 15067 plymullem1 15068 plycolemc 15078 lgseisenlem3 15397 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |