| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval2 | Unicode version | ||
| Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval2.1 |
|
| offval2.2 |
|
| offval2.3 |
|
| offval2.4 |
|
| offval2.5 |
|
| Ref | Expression |
|---|---|
| offval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.2 |
. . . . . 6
| |
| 2 | 1 | ralrimiva 2603 |
. . . . 5
|
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | 3 | fnmpt 5450 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | offval2.4 |
. . . . 5
| |
| 7 | 6 | fneq1d 5411 |
. . . 4
|
| 8 | 5, 7 | mpbird 167 |
. . 3
|
| 9 | offval2.3 |
. . . . . 6
| |
| 10 | 9 | ralrimiva 2603 |
. . . . 5
|
| 11 | eqid 2229 |
. . . . . 6
| |
| 12 | 11 | fnmpt 5450 |
. . . . 5
|
| 13 | 10, 12 | syl 14 |
. . . 4
|
| 14 | offval2.5 |
. . . . 5
| |
| 15 | 14 | fneq1d 5411 |
. . . 4
|
| 16 | 13, 15 | mpbird 167 |
. . 3
|
| 17 | offval2.1 |
. . 3
| |
| 18 | inidm 3413 |
. . 3
| |
| 19 | 6 | adantr 276 |
. . . 4
|
| 20 | 19 | fveq1d 5629 |
. . 3
|
| 21 | 14 | adantr 276 |
. . . 4
|
| 22 | 21 | fveq1d 5629 |
. . 3
|
| 23 | 8, 16, 17, 17, 18, 20, 22 | offval 6226 |
. 2
|
| 24 | nffvmpt1 5638 |
. . . . 5
| |
| 25 | nfcv 2372 |
. . . . 5
| |
| 26 | nffvmpt1 5638 |
. . . . 5
| |
| 27 | 24, 25, 26 | nfov 6031 |
. . . 4
|
| 28 | nfcv 2372 |
. . . 4
| |
| 29 | fveq2 5627 |
. . . . 5
| |
| 30 | fveq2 5627 |
. . . . 5
| |
| 31 | 29, 30 | oveq12d 6019 |
. . . 4
|
| 32 | 27, 28, 31 | cbvmpt 4179 |
. . 3
|
| 33 | simpr 110 |
. . . . . 6
| |
| 34 | 3 | fvmpt2 5718 |
. . . . . 6
|
| 35 | 33, 1, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 11 | fvmpt2 5718 |
. . . . . 6
|
| 37 | 33, 9, 36 | syl2anc 411 |
. . . . 5
|
| 38 | 35, 37 | oveq12d 6019 |
. . . 4
|
| 39 | 38 | mpteq2dva 4174 |
. . 3
|
| 40 | 32, 39 | eqtrid 2274 |
. 2
|
| 41 | 23, 40 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-of 6218 |
| This theorem is referenced by: ofc12 6242 caofinvl 6244 caofcom 6249 caofdig 6252 pwsplusgval 13328 pwsmulrval 13329 pwssub 13646 gsumfzmptfidmadd 13876 gsumfzmptfidmadd2 13877 psrlinv 14648 dvimulf 15380 dvexp 15385 dvmptaddx 15393 dvmptmulx 15394 dvef 15401 plyaddlem1 15421 plymullem1 15422 plycolemc 15432 lgseisenlem3 15751 lgseisenlem4 15752 |
| Copyright terms: Public domain | W3C validator |