| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofc2g | GIF version | ||
| Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| ofc2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofc2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofc2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofc2.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofc2g.ex | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ofc2g | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc2.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | ofc2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | fnconstg 5484 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 5 | ofc2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | inidm 3386 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | ofc2.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 8 | fvconst2g 5810 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
| 9 | 2, 8 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 10 | ofc2g.ex | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐶𝑅𝐵) ∈ 𝑈) | |
| 11 | 1, 4, 5, 5, 6, 7, 9, 10 | ofvalg 6180 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘𝑓 𝑅(𝐴 × {𝐵}))‘𝑋) = (𝐶𝑅𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3637 × cxp 4680 Fn wfn 5274 ‘cfv 5279 (class class class)co 5956 ∘𝑓 cof 6168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |