ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot2ndg GIF version

Theorem ot2ndg 6249
Description: Extract the second member of an ordered triple. (See ot1stg 6248 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 3645 . . . . 5 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 5589 . . . 4 (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opexg 4277 . . . . . 6 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
4 op1stg 6246 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
53, 4sylan 283 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
653impa 1197 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
72, 6eqtrid 2251 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
87fveq2d 5590 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (2nd ‘⟨𝐴, 𝐵⟩))
9 op2ndg 6247 . . 3 ((𝐴𝑉𝐵𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1093adant3 1020 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
118, 10eqtrd 2239 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  cop 3638  cotp 3639  cfv 5277  1st c1st 6234  2nd c2nd 6235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-ot 3645  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-iota 5238  df-fun 5279  df-fv 5285  df-1st 6236  df-2nd 6237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator