ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelimab GIF version

Theorem ovelimab 6074
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem ovelimab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5617 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷))
2 fveq2 5558 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 5925 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2247 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54eqeq1d 2205 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷 ↔ (𝑥𝐹𝑦) = 𝐷))
6 eqcom 2198 . . . 4 ((𝑥𝐹𝑦) = 𝐷𝐷 = (𝑥𝐹𝑦))
75, 6bitrdi 196 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = 𝐷𝐷 = (𝑥𝐹𝑦)))
87rexxp 4810 . 2 (∃𝑧 ∈ (𝐵 × 𝐶)(𝐹𝑧) = 𝐷 ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦))
91, 8bitrdi 196 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝐷 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑥𝐵𝑦𝐶 𝐷 = (𝑥𝐹𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  wss 3157  cop 3625   × cxp 4661  cima 4666   Fn wfn 5253  cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925
This theorem is referenced by:  dfz2  9398  elq  9696
  Copyright terms: Public domain W3C validator