ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopfv Unicode version

Theorem funopfv 5597
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 4031 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funbrfv 5596 . 2  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
31, 2biimtrrid 153 1  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030   Fun wfun 5249   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263
This theorem is referenced by:  fvopab3ig  5632  fvsn  5754  ovidig  6037  ovigg  6040  f1o2ndf1  6283  fundmen  6862  frecuzrdg0  10487  frecuzrdgsuc  10488  frecuzrdg0t  10496  frecuzrdgsuctlem  10497  strslfvd  12663  strslfv2d  12664  imasaddvallemg  12901
  Copyright terms: Public domain W3C validator