Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funopfv | Unicode version |
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
funopfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3980 | . 2 | |
2 | funbrfv 5522 | . 2 | |
3 | 1, 2 | syl5bir 152 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 wcel 2135 cop 3576 class class class wbr 3979 wfun 5179 cfv 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-sbc 2950 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-iota 5150 df-fun 5187 df-fv 5193 |
This theorem is referenced by: fvopab3ig 5557 fvsn 5677 ovidig 5953 ovigg 5956 f1o2ndf1 6190 fundmen 6766 frecuzrdg0 10342 frecuzrdgsuc 10343 frecuzrdg0t 10351 frecuzrdgsuctlem 10352 strslfvd 12429 strslfv2d 12430 |
Copyright terms: Public domain | W3C validator |