ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopfv Unicode version

Theorem funopfv 5523
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 3980 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funbrfv 5522 . 2  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
31, 2syl5bir 152 1  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   <.cop 3576   class class class wbr 3979   Fun wfun 5179   ` cfv 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2726  df-sbc 2950  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-iota 5150  df-fun 5187  df-fv 5193
This theorem is referenced by:  fvopab3ig  5557  fvsn  5677  ovidig  5953  ovigg  5956  f1o2ndf1  6190  fundmen  6766  frecuzrdg0  10342  frecuzrdgsuc  10343  frecuzrdg0t  10351  frecuzrdgsuctlem  10352  strslfvd  12429  strslfv2d  12430
  Copyright terms: Public domain W3C validator