ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopfv Unicode version

Theorem funopfv 5568
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 4016 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funbrfv 5567 . 2  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
31, 2biimtrrid 153 1  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   <.cop 3607   class class class wbr 4015   Fun wfun 5222   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236
This theorem is referenced by:  fvopab3ig  5603  fvsn  5724  ovidig  6006  ovigg  6009  f1o2ndf1  6243  fundmen  6820  frecuzrdg0  10427  frecuzrdgsuc  10428  frecuzrdg0t  10436  frecuzrdgsuctlem  10437  strslfvd  12518  strslfv2d  12519  imasaddvallemg  12754
  Copyright terms: Public domain W3C validator