ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopfv Unicode version

Theorem funopfv 5557
Description: The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
funopfv  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )

Proof of Theorem funopfv
StepHypRef Expression
1 df-br 4006 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funbrfv 5556 . 2  |-  ( Fun 
F  ->  ( A F B  ->  ( F `
 A )  =  B ) )
31, 2biimtrrid 153 1  |-  ( Fun 
F  ->  ( <. A ,  B >.  e.  F  ->  ( F `  A
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by:  fvopab3ig  5592  fvsn  5713  ovidig  5994  ovigg  5997  f1o2ndf1  6231  fundmen  6808  frecuzrdg0  10415  frecuzrdgsuc  10416  frecuzrdg0t  10424  frecuzrdgsuctlem  10425  strslfvd  12506  strslfv2d  12507  imasaddvallemg  12741
  Copyright terms: Public domain W3C validator