Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovigg | GIF version |
Description: The value of an operation class abstraction. Compare ovig 5936. The condition (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovigg.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
ovigg.4 | ⊢ ∃*𝑧𝜑 |
ovigg.5 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
ovigg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovigg.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
2 | 1 | eloprabga 5902 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) |
3 | df-ov 5821 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
4 | ovigg.5 | . . . . 5 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
5 | 4 | fveq1i 5466 | . . . 4 ⊢ (𝐹‘〈𝐴, 𝐵〉) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2178 | . . 3 ⊢ (𝐴𝐹𝐵) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) |
7 | ovigg.4 | . . . . 5 ⊢ ∃*𝑧𝜑 | |
8 | 7 | funoprab 5915 | . . . 4 ⊢ Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
9 | funopfv 5505 | . . . 4 ⊢ (Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}‘〈𝐴, 𝐵〉) = 𝐶) |
11 | 6, 10 | syl5eq 2202 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶) |
12 | 2, 11 | syl6bir 163 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∃*wmo 2007 ∈ wcel 2128 〈cop 3563 Fun wfun 5161 ‘cfv 5167 (class class class)co 5818 {coprab 5819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-ov 5821 df-oprab 5822 |
This theorem is referenced by: ovig 5936 |
Copyright terms: Public domain | W3C validator |