ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovigg GIF version

Theorem ovigg 6076
Description: The value of an operation class abstraction. Compare ovig 6077. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovigg.4 ∃*𝑧𝜑
ovigg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovigg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
21eloprabga 6042 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
3 df-ov 5957 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
4 ovigg.5 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54fveq1i 5587 . . . 4 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2227 . . 3 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
7 ovigg.4 . . . . 5 ∃*𝑧𝜑
87funoprab 6055 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
9 funopfv 5628 . . . 4 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶))
108, 9ax-mp 5 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶)
116, 10eqtrid 2251 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶)
122, 11biimtrrdi 164 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  ∃*wmo 2056  wcel 2177  cop 3638  Fun wfun 5271  cfv 5277  (class class class)co 5954  {coprab 5955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285  df-ov 5957  df-oprab 5958
This theorem is referenced by:  ovig  6077
  Copyright terms: Public domain W3C validator