ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovigg GIF version

Theorem ovigg 5973
Description: The value of an operation class abstraction. Compare ovig 5974. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovigg.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovigg.4 ∃*𝑧𝜑
ovigg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
ovigg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem ovigg
StepHypRef Expression
1 ovigg.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
21eloprabga 5940 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
3 df-ov 5856 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
4 ovigg.5 . . . . 5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
54fveq1i 5497 . . . 4 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
63, 5eqtri 2191 . . 3 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩)
7 ovigg.4 . . . . 5 ∃*𝑧𝜑
87funoprab 5953 . . . 4 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
9 funopfv 5536 . . . 4 (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶))
108, 9ax-mp 5 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}‘⟨𝐴, 𝐵⟩) = 𝐶)
116, 10eqtrid 2215 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝐴𝐹𝐵) = 𝐶)
122, 11syl6bir 163 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  ∃*wmo 2020  wcel 2141  cop 3586  Fun wfun 5192  cfv 5198  (class class class)co 5853  {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857
This theorem is referenced by:  ovig  5974
  Copyright terms: Public domain W3C validator