ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id3 Unicode version

Theorem seq3id3 10669
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid3s.1  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
iseqid3s.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid3s.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
iseqid3s.z  |-  ( ph  ->  Z  e.  S )
iseqid3s.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid3s.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y    x, Z, y    x, N, y   
x, S, y

Proof of Theorem seq3id3
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqid3s.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10154 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
3 fveqeq2 5585 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) )
43imbi2d 230 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) ) )
5 fveqeq2 5585 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) )
65imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) ) )
7 fveqeq2 5585 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
87imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
9 fveqeq2 5585 . . . . 5  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
109imbi2d 230 . . . 4  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) ) )
11 eluzel2 9653 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
121, 11syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
13 iseqid3s.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
14 iseqid3s.cl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1512, 13, 14seq3-1 10607 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
16 iseqid3s.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
1716ralrimiva 2579 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
18 eluzfz1 10153 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
19 fveqeq2 5585 . . . . . . . . 9  |-  ( x  =  M  ->  (
( F `  x
)  =  Z  <->  ( F `  M )  =  Z ) )
2019rspcv 2873 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
211, 18, 203syl 17 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  ( M ... N
) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
2217, 21mpd 13 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  Z )
2315, 22eqtrd 2238 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z )
2423a1i 9 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z ) )
25 elfzouz 10273 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
2625adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  (
ZZ>= `  M ) )
2713adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2814adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2926, 27, 28seq3p1 10610 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
3029adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )
32 fveqeq2 5585 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( k  +  1 ) )  =  Z ) )
3317adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
34 fzofzp1 10356 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
3534adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
3632, 33, 35rspcdva 2882 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( F `  ( k  +  1 ) )  =  Z )
3736adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( F `  ( k  +  1 ) )  =  Z )
3831, 37oveq12d 5962 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  =  ( Z  .+  Z
) )
39 iseqid3s.1 . . . . . . . . 9  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
4039ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( Z  .+  Z )  =  Z )
4130, 38, 403eqtrd 2242 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z )
4241ex 115 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
4342expcom 116 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  =  Z  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
4443a2d 26 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z ) ) )
454, 6, 8, 10, 24, 44fzind2 10368 . . 3  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  =  Z ) )
461, 2, 453syl 17 . 2  |-  ( ph  ->  ( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
4746pm2.43i 49 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   1c1 7926    + caddc 7928   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130  ..^cfzo 10264    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-seqfrec 10593
This theorem is referenced by:  seq3id  10670  ser0  10678  prodf1  11853  mulgnn0z  13485  lgsval2lem  15487
  Copyright terms: Public domain W3C validator