Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3id3 | Unicode version |
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a -idempotent sums (or "'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.) |
Ref | Expression |
---|---|
iseqid3s.1 | |
iseqid3s.2 | |
iseqid3s.3 | |
iseqid3s.z | |
iseqid3s.f | |
iseqid3s.cl |
Ref | Expression |
---|---|
seq3id3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqid3s.2 | . . 3 | |
2 | eluzfz2 9912 | . . 3 | |
3 | fveqeq2 5470 | . . . . 5 | |
4 | 3 | imbi2d 229 | . . . 4 |
5 | fveqeq2 5470 | . . . . 5 | |
6 | 5 | imbi2d 229 | . . . 4 |
7 | fveqeq2 5470 | . . . . 5 | |
8 | 7 | imbi2d 229 | . . . 4 |
9 | fveqeq2 5470 | . . . . 5 | |
10 | 9 | imbi2d 229 | . . . 4 |
11 | eluzel2 9423 | . . . . . . . 8 | |
12 | 1, 11 | syl 14 | . . . . . . 7 |
13 | iseqid3s.f | . . . . . . 7 | |
14 | iseqid3s.cl | . . . . . . 7 | |
15 | 12, 13, 14 | seq3-1 10337 | . . . . . 6 |
16 | iseqid3s.3 | . . . . . . . 8 | |
17 | 16 | ralrimiva 2527 | . . . . . . 7 |
18 | eluzfz1 9911 | . . . . . . . 8 | |
19 | fveqeq2 5470 | . . . . . . . . 9 | |
20 | 19 | rspcv 2809 | . . . . . . . 8 |
21 | 1, 18, 20 | 3syl 17 | . . . . . . 7 |
22 | 17, 21 | mpd 13 | . . . . . 6 |
23 | 15, 22 | eqtrd 2187 | . . . . 5 |
24 | 23 | a1i 9 | . . . 4 |
25 | elfzouz 10028 | . . . . . . . . . . 11 ..^ | |
26 | 25 | adantl 275 | . . . . . . . . . 10 ..^ |
27 | 13 | adantlr 469 | . . . . . . . . . 10 ..^ |
28 | 14 | adantlr 469 | . . . . . . . . . 10 ..^ |
29 | 26, 27, 28 | seq3p1 10339 | . . . . . . . . 9 ..^ |
30 | 29 | adantr 274 | . . . . . . . 8 ..^ |
31 | simpr 109 | . . . . . . . . 9 ..^ | |
32 | fveqeq2 5470 | . . . . . . . . . . 11 | |
33 | 17 | adantr 274 | . . . . . . . . . . 11 ..^ |
34 | fzofzp1 10104 | . . . . . . . . . . . 12 ..^ | |
35 | 34 | adantl 275 | . . . . . . . . . . 11 ..^ |
36 | 32, 33, 35 | rspcdva 2818 | . . . . . . . . . 10 ..^ |
37 | 36 | adantr 274 | . . . . . . . . 9 ..^ |
38 | 31, 37 | oveq12d 5832 | . . . . . . . 8 ..^ |
39 | iseqid3s.1 | . . . . . . . . 9 | |
40 | 39 | ad2antrr 480 | . . . . . . . 8 ..^ |
41 | 30, 38, 40 | 3eqtrd 2191 | . . . . . . 7 ..^ |
42 | 41 | ex 114 | . . . . . 6 ..^ |
43 | 42 | expcom 115 | . . . . 5 ..^ |
44 | 43 | a2d 26 | . . . 4 ..^ |
45 | 4, 6, 8, 10, 24, 44 | fzind2 10116 | . . 3 |
46 | 1, 2, 45 | 3syl 17 | . 2 |
47 | 46 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 wral 2432 cfv 5163 (class class class)co 5814 c1 7712 caddc 7714 cz 9146 cuz 9418 cfz 9890 ..^cfzo 10019 cseq 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-fz 9891 df-fzo 10020 df-seqfrec 10323 |
This theorem is referenced by: seq3id 10385 ser0 10391 prodf1 11416 |
Copyright terms: Public domain | W3C validator |