ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id3 Unicode version

Theorem seq3id3 10706
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid3s.1  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
iseqid3s.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid3s.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
iseqid3s.z  |-  ( ph  ->  Z  e.  S )
iseqid3s.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid3s.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y    x, Z, y    x, N, y   
x, S, y

Proof of Theorem seq3id3
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqid3s.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10189 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
3 fveqeq2 5608 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) )
43imbi2d 230 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) ) )
5 fveqeq2 5608 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) )
65imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) ) )
7 fveqeq2 5608 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
87imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
9 fveqeq2 5608 . . . . 5  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
109imbi2d 230 . . . 4  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) ) )
11 eluzel2 9688 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
121, 11syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
13 iseqid3s.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
14 iseqid3s.cl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1512, 13, 14seq3-1 10644 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
16 iseqid3s.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
1716ralrimiva 2581 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
18 eluzfz1 10188 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
19 fveqeq2 5608 . . . . . . . . 9  |-  ( x  =  M  ->  (
( F `  x
)  =  Z  <->  ( F `  M )  =  Z ) )
2019rspcv 2880 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
211, 18, 203syl 17 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  ( M ... N
) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
2217, 21mpd 13 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  Z )
2315, 22eqtrd 2240 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z )
2423a1i 9 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z ) )
25 elfzouz 10308 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
2625adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  (
ZZ>= `  M ) )
2713adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2814adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2926, 27, 28seq3p1 10647 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
3029adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
31 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )
32 fveqeq2 5608 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( k  +  1 ) )  =  Z ) )
3317adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
34 fzofzp1 10393 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
3534adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
3632, 33, 35rspcdva 2889 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( F `  ( k  +  1 ) )  =  Z )
3736adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( F `  ( k  +  1 ) )  =  Z )
3831, 37oveq12d 5985 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  =  ( Z  .+  Z
) )
39 iseqid3s.1 . . . . . . . . 9  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
4039ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( Z  .+  Z )  =  Z )
4130, 38, 403eqtrd 2244 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z )
4241ex 115 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
4342expcom 116 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  =  Z  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
4443a2d 26 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z ) ) )
454, 6, 8, 10, 24, 44fzind2 10405 . . 3  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  =  Z ) )
461, 2, 453syl 17 . 2  |-  ( ph  ->  ( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
4746pm2.43i 49 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165  ..^cfzo 10299    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630
This theorem is referenced by:  seq3id  10707  ser0  10715  prodf1  11968  mulgnn0z  13600  lgsval2lem  15602
  Copyright terms: Public domain W3C validator