| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3id3 | Unicode version | ||
| Description: A sequence that consists
entirely of "zeroes" sums to "zero". More
precisely, a constant sequence with value an element which is a |
| Ref | Expression |
|---|---|
| iseqid3s.1 |
|
| iseqid3s.2 |
|
| iseqid3s.3 |
|
| iseqid3s.z |
|
| iseqid3s.f |
|
| iseqid3s.cl |
|
| Ref | Expression |
|---|---|
| seq3id3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqid3s.2 |
. . 3
| |
| 2 | eluzfz2 10189 |
. . 3
| |
| 3 | fveqeq2 5608 |
. . . . 5
| |
| 4 | 3 | imbi2d 230 |
. . . 4
|
| 5 | fveqeq2 5608 |
. . . . 5
| |
| 6 | 5 | imbi2d 230 |
. . . 4
|
| 7 | fveqeq2 5608 |
. . . . 5
| |
| 8 | 7 | imbi2d 230 |
. . . 4
|
| 9 | fveqeq2 5608 |
. . . . 5
| |
| 10 | 9 | imbi2d 230 |
. . . 4
|
| 11 | eluzel2 9688 |
. . . . . . . 8
| |
| 12 | 1, 11 | syl 14 |
. . . . . . 7
|
| 13 | iseqid3s.f |
. . . . . . 7
| |
| 14 | iseqid3s.cl |
. . . . . . 7
| |
| 15 | 12, 13, 14 | seq3-1 10644 |
. . . . . 6
|
| 16 | iseqid3s.3 |
. . . . . . . 8
| |
| 17 | 16 | ralrimiva 2581 |
. . . . . . 7
|
| 18 | eluzfz1 10188 |
. . . . . . . 8
| |
| 19 | fveqeq2 5608 |
. . . . . . . . 9
| |
| 20 | 19 | rspcv 2880 |
. . . . . . . 8
|
| 21 | 1, 18, 20 | 3syl 17 |
. . . . . . 7
|
| 22 | 17, 21 | mpd 13 |
. . . . . 6
|
| 23 | 15, 22 | eqtrd 2240 |
. . . . 5
|
| 24 | 23 | a1i 9 |
. . . 4
|
| 25 | elfzouz 10308 |
. . . . . . . . . . 11
| |
| 26 | 25 | adantl 277 |
. . . . . . . . . 10
|
| 27 | 13 | adantlr 477 |
. . . . . . . . . 10
|
| 28 | 14 | adantlr 477 |
. . . . . . . . . 10
|
| 29 | 26, 27, 28 | seq3p1 10647 |
. . . . . . . . 9
|
| 30 | 29 | adantr 276 |
. . . . . . . 8
|
| 31 | simpr 110 |
. . . . . . . . 9
| |
| 32 | fveqeq2 5608 |
. . . . . . . . . . 11
| |
| 33 | 17 | adantr 276 |
. . . . . . . . . . 11
|
| 34 | fzofzp1 10393 |
. . . . . . . . . . . 12
| |
| 35 | 34 | adantl 277 |
. . . . . . . . . . 11
|
| 36 | 32, 33, 35 | rspcdva 2889 |
. . . . . . . . . 10
|
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | 31, 37 | oveq12d 5985 |
. . . . . . . 8
|
| 39 | iseqid3s.1 |
. . . . . . . . 9
| |
| 40 | 39 | ad2antrr 488 |
. . . . . . . 8
|
| 41 | 30, 38, 40 | 3eqtrd 2244 |
. . . . . . 7
|
| 42 | 41 | ex 115 |
. . . . . 6
|
| 43 | 42 | expcom 116 |
. . . . 5
|
| 44 | 43 | a2d 26 |
. . . 4
|
| 45 | 4, 6, 8, 10, 24, 44 | fzind2 10405 |
. . 3
|
| 46 | 1, 2, 45 | 3syl 17 |
. 2
|
| 47 | 46 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-seqfrec 10630 |
| This theorem is referenced by: seq3id 10707 ser0 10715 prodf1 11968 mulgnn0z 13600 lgsval2lem 15602 |
| Copyright terms: Public domain | W3C validator |