ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id3 Unicode version

Theorem seq3id3 10442
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid3s.1  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
iseqid3s.2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid3s.3  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
iseqid3s.z  |-  ( ph  ->  Z  e.  S )
iseqid3s.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid3s.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Distinct variable groups:    x, y,  .+    x, F, y    x, M, y    ph, x, y    x, Z, y    x, N, y   
x, S, y

Proof of Theorem seq3id3
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqid3s.2 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9967 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
3 fveqeq2 5495 . . . . 5  |-  ( w  =  M  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) )
43imbi2d 229 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  M
)  =  Z ) ) )
5 fveqeq2 5495 . . . . 5  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) )
65imbi2d 229 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  k
)  =  Z ) ) )
7 fveqeq2 5495 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
87imbi2d 229 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
9 fveqeq2 5495 . . . . 5  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ) `  w
)  =  Z  <->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
109imbi2d 229 . . . 4  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ) `  w
)  =  Z )  <-> 
( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) ) )
11 eluzel2 9471 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
121, 11syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
13 iseqid3s.f . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
14 iseqid3s.cl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1512, 13, 14seq3-1 10395 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
16 iseqid3s.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  ( F `  x )  =  Z )
1716ralrimiva 2539 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
18 eluzfz1 9966 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
19 fveqeq2 5495 . . . . . . . . 9  |-  ( x  =  M  ->  (
( F `  x
)  =  Z  <->  ( F `  M )  =  Z ) )
2019rspcv 2826 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. x  e.  ( M ... N ) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
211, 18, 203syl 17 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  ( M ... N
) ( F `  x )  =  Z  ->  ( F `  M )  =  Z ) )
2217, 21mpd 13 . . . . . 6  |-  ( ph  ->  ( F `  M
)  =  Z )
2315, 22eqtrd 2198 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z )
2423a1i 9 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  Z ) )
25 elfzouz 10086 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
2625adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  (
ZZ>= `  M ) )
2713adantlr 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2814adantlr 469 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2926, 27, 28seq3p1 10397 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
3029adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
31 simpr 109 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )
32 fveqeq2 5495 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  =  Z  <->  ( F `  ( k  +  1 ) )  =  Z ) )
3317adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A. x  e.  ( M ... N ) ( F `  x
)  =  Z )
34 fzofzp1 10162 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
3534adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( k  +  1 )  e.  ( M ... N ) )
3632, 33, 35rspcdva 2835 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( F `  ( k  +  1 ) )  =  Z )
3736adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( F `  ( k  +  1 ) )  =  Z )
3831, 37oveq12d 5860 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( (  seq M (  .+  ,  F ) `  k
)  .+  ( F `  ( k  +  1 ) ) )  =  ( Z  .+  Z
) )
39 iseqid3s.1 . . . . . . . . 9  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
4039ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  ( Z  .+  Z )  =  Z )
4130, 38, 403eqtrd 2202 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  (  seq M (  .+  ,  F ) `  k
)  =  Z )  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z )
4241ex 114 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) )
4342expcom 115 . . . . 5  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  k )  =  Z  ->  (  seq M (  .+  ,  F ) `  (
k  +  1 ) )  =  Z ) ) )
4443a2d 26 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F
) `  k )  =  Z )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  ( k  +  1 ) )  =  Z ) ) )
454, 6, 8, 10, 24, 44fzind2 10174 . . 3  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  F
) `  N )  =  Z ) )
461, 2, 453syl 17 . 2  |-  ( ph  ->  ( ph  ->  (  seq M (  .+  ,  F ) `  N
)  =  Z ) )
4746pm2.43i 49 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842   1c1 7754    + caddc 7756   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381
This theorem is referenced by:  seq3id  10443  ser0  10449  prodf1  11483  lgsval2lem  13551
  Copyright terms: Public domain W3C validator