ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1d Unicode version

Theorem prodeq1d 11875
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
prodeq1d  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 prodeq1 11864 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2syl 14 1  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   prod_cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-seqfrec 10593  df-proddc 11862
This theorem is referenced by:  prodeq12dv  11880  prodeq12rdv  11881  fprodf1o  11899  fprod1  11905  fprodp1  11911  fprodcl2lem  11916  fprodfac  11926  fprodabs  11927  fprod2d  11934  fprodcom2fi  11937  eulerthlemrprm  12551  eulerthlema  12552  gausslemma2dlem4  15541
  Copyright terms: Public domain W3C validator