ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1d Unicode version

Theorem prodeq1d 11590
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
prodeq1d  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 prodeq1 11579 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2syl 14 1  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   prod_cprod 11576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-cnv 4649  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-recs 6324  df-frec 6410  df-seqfrec 10464  df-proddc 11577
This theorem is referenced by:  prodeq12dv  11595  prodeq12rdv  11596  fprodf1o  11614  fprod1  11620  fprodp1  11626  fprodcl2lem  11631  fprodfac  11641  fprodabs  11642  fprod2d  11649  fprodcom2fi  11652  eulerthlemrprm  12247  eulerthlema  12248
  Copyright terms: Public domain W3C validator