| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq1d | Unicode version | ||
| Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1d.1 |
|
| Ref | Expression |
|---|---|
| prodeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1d.1 |
. 2
| |
| 2 | prodeq1 11979 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-recs 6414 df-frec 6500 df-seqfrec 10630 df-proddc 11977 |
| This theorem is referenced by: prodeq12dv 11995 prodeq12rdv 11996 fprodf1o 12014 fprod1 12020 fprodp1 12026 fprodcl2lem 12031 fprodfac 12041 fprodabs 12042 fprod2d 12049 fprodcom2fi 12052 eulerthlemrprm 12666 eulerthlema 12667 gausslemma2dlem4 15656 |
| Copyright terms: Public domain | W3C validator |