ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodeq1d Unicode version

Theorem prodeq1d 11505
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
prodeq1d  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Distinct variable groups:    A, k    B, k
Allowed substitution hints:    ph( k)    C( k)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 prodeq1 11494 . 2  |-  ( A  =  B  ->  prod_ k  e.  A  C  = 
prod_ k  e.  B  C )
31, 2syl 14 1  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381  df-proddc 11492
This theorem is referenced by:  prodeq12dv  11510  prodeq12rdv  11511  fprodf1o  11529  fprod1  11535  fprodp1  11541  fprodcl2lem  11546  fprodfac  11556  fprodabs  11557  fprod2d  11564  fprodcom2fi  11567  eulerthlemrprm  12161  eulerthlema  12162
  Copyright terms: Public domain W3C validator