| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodeq1d | Unicode version | ||
| Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1d.1 |
|
| Ref | Expression |
|---|---|
| prodeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1d.1 |
. 2
| |
| 2 | prodeq1 11864 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-seqfrec 10593 df-proddc 11862 |
| This theorem is referenced by: prodeq12dv 11880 prodeq12rdv 11881 fprodf1o 11899 fprod1 11905 fprodp1 11911 fprodcl2lem 11916 fprodfac 11926 fprodabs 11927 fprod2d 11934 fprodcom2fi 11937 eulerthlemrprm 12551 eulerthlema 12552 gausslemma2dlem4 15541 |
| Copyright terms: Public domain | W3C validator |