ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssnqu Unicode version

Theorem prssnqu 7421
Description: The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prssnqu  |-  ( <. L ,  U >.  e. 
P.  ->  U  C_  Q. )

Proof of Theorem prssnqu
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7415 . 2  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U ) )  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  ( x  <Q  y  /\  y  e.  L )
)  /\  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )  /\  A. x  e.  Q.  -.  (
x  e.  L  /\  x  e.  U )  /\  A. x  e.  Q.  A. y  e.  Q.  (
x  <Q  y  ->  (
x  e.  L  \/  y  e.  U )
) ) ) )
2 simpllr 524 . 2  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U )
)  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  (
x  <Q  y  /\  y  e.  L ) )  /\  A. y  e.  Q.  (
y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U
) ) )  /\  A. x  e.  Q.  -.  ( x  e.  L  /\  x  e.  U
)  /\  A. x  e.  Q.  A. y  e. 
Q.  ( x  <Q  y  ->  ( x  e.  L  \/  y  e.  U ) ) ) )  ->  U  C_  Q. )
31, 2sylbi 120 1  |-  ( <. L ,  U >.  e. 
P.  ->  U  C_  Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   <.cop 3579   class class class wbr 3982   Q.cnq 7221    <Q cltq 7226   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-qs 6507  df-ni 7245  df-nqqs 7289  df-inp 7407
This theorem is referenced by:  elprnqu  7423
  Copyright terms: Public domain W3C validator