ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssnqu Unicode version

Theorem prssnqu 7595
Description: The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prssnqu  |-  ( <. L ,  U >.  e. 
P.  ->  U  C_  Q. )

Proof of Theorem prssnqu
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7589 . 2  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U ) )  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  ( x  <Q  y  /\  y  e.  L )
)  /\  A. y  e.  Q.  ( y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U )
) )  /\  A. x  e.  Q.  -.  (
x  e.  L  /\  x  e.  U )  /\  A. x  e.  Q.  A. y  e.  Q.  (
x  <Q  y  ->  (
x  e.  L  \/  y  e.  U )
) ) ) )
2 simpllr 534 . 2  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. x  e.  Q.  x  e.  L  /\  E. y  e.  Q.  y  e.  U )
)  /\  ( ( A. x  e.  Q.  ( x  e.  L  <->  E. y  e.  Q.  (
x  <Q  y  /\  y  e.  L ) )  /\  A. y  e.  Q.  (
y  e.  U  <->  E. x  e.  Q.  ( x  <Q  y  /\  x  e.  U
) ) )  /\  A. x  e.  Q.  -.  ( x  e.  L  /\  x  e.  U
)  /\  A. x  e.  Q.  A. y  e. 
Q.  ( x  <Q  y  ->  ( x  e.  L  \/  y  e.  U ) ) ) )  ->  U  C_  Q. )
31, 2sylbi 121 1  |-  ( <. L ,  U >.  e. 
P.  ->  U  C_  Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   <.cop 3636   class class class wbr 4045   Q.cnq 7395    <Q cltq 7400   P.cnp 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-qs 6628  df-ni 7419  df-nqqs 7463  df-inp 7581
This theorem is referenced by:  elprnqu  7597
  Copyright terms: Public domain W3C validator