ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprnql Unicode version

Theorem elprnql 7664
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
elprnql  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )

Proof of Theorem elprnql
StepHypRef Expression
1 prssnql 7662 . 2  |-  ( <. L ,  U >.  e. 
P.  ->  L  C_  Q. )
21sselda 3224 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  L )  ->  B  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   <.cop 3669   Q.cnq 7463   P.cnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-qs 6684  df-ni 7487  df-nqqs 7531  df-inp 7649
This theorem is referenced by:  prubl  7669  prnmaxl  7671  prarloclemlt  7676  prarloclemlo  7677  prarloclem5  7683  genpdf  7691  genipv  7692  genpelvl  7695  genpml  7700  genprndl  7704  genpassl  7707  addnqprllem  7710  addnqprl  7712  addlocprlemeqgt  7715  addlocprlemgt  7717  addlocprlem  7718  nqprl  7734  prmuloc  7749  mulnqprl  7751  addcomprg  7761  mulcomprg  7763  distrlem1prl  7765  distrlem4prl  7767  1idprl  7773  ltsopr  7779  ltexprlemm  7783  ltexprlemopl  7784  ltexprlemopu  7786  ltexprlemupu  7787  ltexprlemdisj  7789  ltexprlemloc  7790  ltexprlemfl  7792  ltexprlemrl  7793  ltexprlemfu  7794  ltexprlemru  7795  addcanprleml  7797  addcanprlemu  7798  recexprlemloc  7814  recexprlem1ssl  7816  recexprlem1ssu  7817  recexprlemss1l  7818  aptiprleml  7822  aptiprlemu  7823  caucvgprprlemopl  7880  suplocexprlemex  7905
  Copyright terms: Public domain W3C validator