![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prssnqu | GIF version |
Description: The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
prssnqu | ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 7224 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))))) | |
2 | simpllr 506 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) → 𝑈 ⊆ Q) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 ∧ w3a 943 ∈ wcel 1461 ∀wral 2388 ∃wrex 2389 ⊆ wss 3035 〈cop 3494 class class class wbr 3893 Qcnq 7030 <Q cltq 7035 Pcnp 7041 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-qs 6387 df-ni 7054 df-nqqs 7098 df-inp 7216 |
This theorem is referenced by: elprnqu 7232 |
Copyright terms: Public domain | W3C validator |