| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnqu | Unicode version | ||
| Description: An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnqu 7667 |
. 2
| |
| 2 | 1 | sselda 3224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6686 df-ni 7491 df-nqqs 7535 df-inp 7653 |
| This theorem is referenced by: prltlu 7674 prnminu 7676 genpdf 7695 genipv 7696 genpelvu 7700 genpmu 7705 genprndu 7709 genpassu 7712 addnqprulem 7715 addnqpru 7717 addlocprlemeqgt 7719 nqpru 7739 prmuloc 7753 mulnqpru 7756 addcomprg 7765 mulcomprg 7767 distrlem1pru 7770 distrlem4pru 7772 1idpru 7778 ltsopr 7783 ltaddpr 7784 ltexprlemm 7787 ltexprlemopl 7788 ltexprlemlol 7789 ltexprlemopu 7790 ltexprlemdisj 7793 ltexprlemloc 7794 ltexprlemfu 7798 ltexprlemru 7799 addcanprlemu 7802 prplnqu 7807 recexprlemloc 7818 recexprlemss1u 7823 aptiprlemu 7827 |
| Copyright terms: Public domain | W3C validator |