ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprnqu Unicode version

Theorem elprnqu 7549
Description: An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
elprnqu  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  B  e.  Q. )

Proof of Theorem elprnqu
StepHypRef Expression
1 prssnqu 7547 . 2  |-  ( <. L ,  U >.  e. 
P.  ->  U  C_  Q. )
21sselda 3183 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  B  e.  U )  ->  B  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   <.cop 3625   Q.cnq 7347   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533
This theorem is referenced by:  prltlu  7554  prnminu  7556  genpdf  7575  genipv  7576  genpelvu  7580  genpmu  7585  genprndu  7589  genpassu  7592  addnqprulem  7595  addnqpru  7597  addlocprlemeqgt  7599  nqpru  7619  prmuloc  7633  mulnqpru  7636  addcomprg  7645  mulcomprg  7647  distrlem1pru  7650  distrlem4pru  7652  1idpru  7658  ltsopr  7663  ltaddpr  7664  ltexprlemm  7667  ltexprlemopl  7668  ltexprlemlol  7669  ltexprlemopu  7670  ltexprlemdisj  7673  ltexprlemloc  7674  ltexprlemfu  7678  ltexprlemru  7679  addcanprlemu  7682  prplnqu  7687  recexprlemloc  7698  recexprlemss1u  7703  aptiprlemu  7707
  Copyright terms: Public domain W3C validator