| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnqu | Unicode version | ||
| Description: An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnqu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnqu 7628 |
. 2
| |
| 2 | 1 | sselda 3201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-qs 6649 df-ni 7452 df-nqqs 7496 df-inp 7614 |
| This theorem is referenced by: prltlu 7635 prnminu 7637 genpdf 7656 genipv 7657 genpelvu 7661 genpmu 7666 genprndu 7670 genpassu 7673 addnqprulem 7676 addnqpru 7678 addlocprlemeqgt 7680 nqpru 7700 prmuloc 7714 mulnqpru 7717 addcomprg 7726 mulcomprg 7728 distrlem1pru 7731 distrlem4pru 7733 1idpru 7739 ltsopr 7744 ltaddpr 7745 ltexprlemm 7748 ltexprlemopl 7749 ltexprlemlol 7750 ltexprlemopu 7751 ltexprlemdisj 7754 ltexprlemloc 7755 ltexprlemfu 7759 ltexprlemru 7760 addcanprlemu 7763 prplnqu 7768 recexprlemloc 7779 recexprlemss1u 7784 aptiprlemu 7788 |
| Copyright terms: Public domain | W3C validator |