ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgifnon2 Unicode version

Theorem rdgifnon2 6526
Description: The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgifnon2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
Distinct variable group:    z, F
Allowed substitution hints:    A( z)    V( z)

Proof of Theorem rdgifnon2
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6516 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 rdgtfr 6520 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
32alrimiv 1920 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. f
( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  _V ) )
41, 3tfri1d 6481 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    e. wcel 2200   _Vcvv 2799    u. cun 3195   U_ciun 3965    |-> cmpt 4145   Oncon0 4454   dom cdm 4719   Fun wfun 5312    Fn wfn 5313   ` cfv 5318   reccrdg 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6451  df-irdg 6516
This theorem is referenced by:  frecrdg  6554
  Copyright terms: Public domain W3C validator