ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgifnon2 Unicode version

Theorem rdgifnon2 6468
Description: The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgifnon2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
Distinct variable group:    z, F
Allowed substitution hints:    A( z)    V( z)

Proof of Theorem rdgifnon2
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6458 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
2 rdgtfr 6462 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
32alrimiv 1897 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. f
( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  _V ) )
41, 3tfri1d 6423 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    e. wcel 2176   _Vcvv 2772    u. cun 3164   U_ciun 3927    |-> cmpt 4106   Oncon0 4411   dom cdm 4676   Fun wfun 5266    Fn wfn 5267   ` cfv 5272   reccrdg 6457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-recs 6393  df-irdg 6458
This theorem is referenced by:  frecrdg  6496
  Copyright terms: Public domain W3C validator