![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrn | GIF version |
Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
rexrn.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexrn | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvex 5335 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ V) | |
2 | 1 | funfni 5127 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ V) |
3 | fvelrnb 5365 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥)) | |
4 | eqcom 2091 | . . . 4 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
5 | 4 | rexbii 2386 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦)) |
6 | 3, 5 | syl6bb 195 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 𝑥 = (𝐹‘𝑦))) |
7 | rexrn.1 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
8 | 7 | adantl 272 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜑 ↔ 𝜓)) |
9 | 2, 6, 8 | rexxfr2d 4300 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 Vcvv 2620 ran crn 4452 Fn wfn 5023 ‘cfv 5028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-iota 4993 df-fun 5030 df-fn 5031 df-fv 5036 |
This theorem is referenced by: elrnrexdm 5452 rexrnmpt 5456 cbvexfo 5579 rexanuz 10475 |
Copyright terms: Public domain | W3C validator |