ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrn GIF version

Theorem rexrn 5729
Description: Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
Hypothesis
Ref Expression
rexrn.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
rexrn (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rexrn
StepHypRef Expression
1 funfvex 5605 . . 3 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
21funfni 5384 . 2 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
3 fvelrnb 5638 . . 3 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝑥))
4 eqcom 2208 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
54rexbii 2514 . . 3 (∃𝑦𝐴 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦))
63, 5bitrdi 196 . 2 (𝐹 Fn 𝐴 → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦𝐴 𝑥 = (𝐹𝑦)))
7 rexrn.1 . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
87adantl 277 . 2 ((𝐹 Fn 𝐴𝑥 = (𝐹𝑦)) → (𝜑𝜓))
92, 6, 8rexxfr2d 4519 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ ran 𝐹𝜑 ↔ ∃𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  ran crn 4683   Fn wfn 5274  cfv 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287
This theorem is referenced by:  elrnrexdm  5731  rexrnmpt  5735  cbvexfo  5867  rexanuz  11369  znunit  14491  lmbr2  14756  lmff  14791
  Copyright terms: Public domain W3C validator